Definitions of Total Sediment Load

<table>
<thead>
<tr>
<th>Mode of Transport</th>
<th>Availability in Stream Bed</th>
<th>Method of Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended</td>
<td>Wash</td>
<td>Measured</td>
</tr>
<tr>
<td>Bed</td>
<td>Bed Material</td>
<td>Unmeasured</td>
</tr>
</tbody>
</table>
TYPES OF SAMPLERS

- Suspended Sediment
- Bed Load
- Bed Material
Unmeasured Load – Unmeasured Zone

Flow

Suspended Load

Unmeasured Bed Load

Q_{wt} = Total water discharge.

Q_{wum1} = Water discharge in zone between the lowest point sampled by the suspended-sediment sampler and the highest point sampled by the bedload sampler.

Q_{wt2} = Water discharge in zone sampled by the bedload sampler.

C_m = Mean velocity weighted suspended-sediment concentration in the zone above the lowest point sampled by the suspended-sediment sampler.

C_{usm1} = Mean velocity weighted suspended-sediment concentration in zone defined by Q_{wum1}.

C_{ts2} = Mean velocity weighted suspended-sediment concentration in zone defined by Q_{wt2}.

Q_{usm1} = Suspended-sediment discharge computed by $C_m Q_{wt} K$ (K = constant based on units used; Porterfield, 1972).

Q_{usm1} = Suspended-sediment discharge in zone defined by Q_{wum1} and computed by $Q_{wum1} C_{usm1} K$.

Q_{ts2} = Suspended-sediment discharge in zone defined by Q_{wt2} and computed by $Q_{wt2} C_{ts2} K$.

D = Sediment discharge of a given size range as measured with the bedload sampler.
Bed Load Variation

- Bed load movement is extremely even when the streamflow is constant
 - Spatially
 - Temporally

![Graph showing bedload transport rate over time]

- Mean rate
ISSSDOTv2 Bedload Measurement
Sediment Load Summary

- Bed load rates vary greatly over space and time
- Unmeasured zone between suspended load and bed load zones
- Most sediment data collected is suspended load
Reservoir Sedimentation Data

- Hydrographic survey – a reservoir survey involving both above water and underwater surveys
 - Topographic survey – Above water
 - Bathymetric survey – Underwater
- Type of data and coverage determined by:
 - Study purpose
 - Site conditions
 - Schedule
 - Budget
Land Survey Techniques

- Tag Line and Level
- Transit
- Total Station
- Global Positioning System (GPS)
Terrestrial LiDAR – Aerial Collection

Capture vertical and horizontal features
Photogrammetry

- Multiple sets of overlapping aerial photos
- Ground control points or targets are matched up in overlapping photos
- Less expensive than aerial LiDAR
Types of Bathymetric Surveys

- Lead Line
- Single Beam
- Multibeam – Swath System
- Bathymetric LiDAR
Lead Line

- Old Technology
- Single depth measurement at each location
- Minimal data processing
- Time consuming
- Sparse data
- Good for depth calibration or survey of small shallow areas
Single Beam

- Simple
- Cost Effective
- Survey at higher speeds
- Less equipment required than other SONAR
- Less data processing than other SONAR
Multibeam – Swath System
Lead Line vs Single Beam vs Multibeam Coverage

- May be missing significant detail with single beam
Bathymetric LiDAR – Green LiDAR

- Best results in shallow clear water
- Accuracy affected by
 - Turbidity
 - Aeration
- Can be collected with terrestrial LiDAR simultaneously
 - Different instruments mounted to same aircraft
Reservoir Sedimentation Data Summary

- Used for monitoring sediment levels and updating area-capacity relationships
- Measurement over entire reservoir often requires a combination of above water and underwater data collection
- Many data collection methods are available depending on
 - Study Purpose
 - Site Conditions
 - Schedule
 - Budget
Questions?