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Outline
 Overview
 Mathematical Formulations
 Numerical Methods
 Verifications and Validation
 Example Applications
 Future work
 Summary
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What is the CMS?
- Integrated wave, current, and 
morphology change model in the 
Surface-water Modeling System (SMS).

Why CMS?
- Operational at 10 Districts and many

consulting companies
- Validated with real applications
- Robust and user-friendly
- Practice-oriented:

1 year simulation ~ 1-3 days on PC
Types of Applications

- Channels: Deepening, widening, 
lengthening, realigning

- Jetties: Lengthening, raising, rehabbing
- O&M: Placement areas – berms, wetlands
- Processes: Navigability – waves and  

currents; Environmental – circulation,
and sediment transport

Coastal Modeling System
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Coastal Modeling System

Availability
• Comes with SMS installation package
• CIRP website (under Products)
• CMS is Free and interface is relatively 

inexpensive
• POC’s: 

 Alejandro.Sanchez@usace.army.mil
 Lihwa.Lin@usace.army.mil
 Mitchell.E.Brown@usace.army.mil

Documentation
• Several TR’s, CHETN’s and journal papers

 http://cirp.usace.army.mil/pubs/
• CIRP Wiki 

 http://cirp.usace.army.mil/wiki/CMS

• New Technical Report will be available this fall
Training and Support

• Annual workshops (13 years)
 http://cirp.usace.army.mil/workshops/

• CMS instructional webinars on CIRP website
 http://cirp.usace.army.mil/webinars/
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 Shoaling, refraction, 
diffraction, reflection

 Bottom friction
 White capping
 Wave breaking (4 options)
 Wind generation
 Wave-current, and          

wave-wave interactions
 Transmission, runup and 

overtopping
 Muddy bottom
 Automatic grid rotation
 Non-uniform Cartesian grid 

with nesting capability
 “Fast Mode”
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 Finite Volume Method
► Conserves mass
► Stable

 Inline CMS-Wave model
► Wave-current interactions

 Inline sediment transport and 
morphology change 
► Non-equilibrium total load
► Multiple-sized transport
► Bed sorting and layering

 Nesting capability
 Forcing

► Tide, river, wind, atm. pres., 
waves, etc. 

 Integrated Particle Tracking 
Model (CMS-PTM)
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CMS-Flow: Key Features

 Grid options
► Non-uniform Cartesian grid: 

Easy to setup
► Telescoping grid:     

Efficient, easy, flexible
 Solver options

► Implicit: Tidal flow, long-term 
morphology change:        
~10 min time step

► Explicit: Flooding, 
breaching, super-critical 
flow: ~ 1 sec time step

 Parallel processing using 
OpenMP

Non-uniform 
Cartesian grid

Telescoping grid
8
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9

SMS Interface
MENU BAR

EDIT WINDOW

GRAPHICS WINDOW

STATUS WINDOW

HELP WINDOW

DATA TREE

TIME STEPS WINDOW

The Project Explorer 
(Data Tree) is a 
dockable window that 
appears by default on 
the left side of the SMS 
screen. 

This window displays a 
hierarchical tree 
structure representing 
all data currently being 
managed in an SMS 
simulation. 
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Validation/Verification
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Quarter Annulus
 M2 Tide: 0.305 m
 No bottom friction
 No wall friction
 No Coriolis
 Time Step: 15 min
 Duration 5 days
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DHL (1980) 

Van Rijn (1986) 

Van Rijn and Havinga (1995) 

12



BUILDING STRONG®

Coastal and 
Hydraulics 
Laboratory

Clear Water Inflow 
over a Hard Bottom
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 Initial depth: 0.15 m
 D50: 0.6 mm
 Hard bottom: 0.31 m
 Inflow velocity: 0.6 m/s
 Time step: 30 sec
 Simulation duration:           

4.25 hrs
 Manning's coefficient:           

0.03 s/m3

 Transport formula:       
Soulsby-van Rijn
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Bed Aggradation (Multiple-sized 
sediments)
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Field Applications
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Nearshore Currents 
and Wave Heights

HORF test case Duck90 test case 
16



BUILDING STRONG®

Coastal and 
Hydraulics 
LaboratorySalinity Validation

Time (hr)

Sa
lin

ity
(k

g/
m

3)

60 65 70 75 80 85 90 95 100
0

5

10

15

20
Measured, 1m above bed
Measured, 1m below surface
Calculated

Pk68

Time (hr)

Sa
lin

ity
(k

g/
m

3)

50 55 60 65 70 75 80
0

3

6

9

12 Measured, 1m above bed
Measured, 1m below surface
Calculated

Paullack

Ebb tide

 Gironde Estuary, FR

17



BUILDING STRONG®

Coastal and 
Hydraulics 
Laboratory

• Objective
Determine benefit of 
proposed circulation 
channel to improve 
water quality in the bay

Kawaihae Harbor, HI

Kawaihae 
Harbor

Pelekane Bay

Incident Wave
(Hs=1.4m)

Hawaii

• Result
Water flow through 
channel due to wave 
setup in Pelekane Bay

• Analyze Alternatives
Several channel design 
alternatives investigated 
interactively with POH

Proposed 
channel

18
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Kawaihae Harbor, HI: 
Current Condition

Kawaihae Harbor

Pelekane Bay
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Kawaihae Harbor, HI: 
With Proposed Channel

Kawaihae Harbor

Pelekane Bay
20
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Objective
 Determine if growing 

spit will affect 
adjacent nav. channel

Result
 Cause and prediction 

of spit growth 
determined

 Spit does and not 
expected to 
significantly impact 
nav. Channel in next 
3 years

flood

ebb
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 Lagrangian approach to simulating the transport, dispersion, 
entrainment and settlement of particles and dissolved 
constituents under both currents and waves

 Fully integrated with CMS-Flow and implemented in the SMS
 Improved visualization for communication of transport to

sponsors
 Large variety and flexibility in specifying sources and sinks
 Calculated spatial maps of sediment mobility, bedform,

sediment pathways, etc.
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CMS-PTM Application:
Poplar Island, MA
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Summary
 Depth-integrated and wave-

averaged
► Hydrodynamic and 
► Sediment transport and 

morphology change models
 Coupled to

► Spectral wave model
► Roller model

 Model extensively verified and 
tested with analytical, 
laboratory, and field test cases

 Field applications demonstrate 
the model capability for 
engineering projects
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Thank You
Questions?
Mitchell Brown

Mitchell.E.Brown@usace.army.mil

Alejandro Sánchez
Alejandro.Sanchez@usace.army.mil/ 

Coastal Inlets Research Program
http://www.cirp.usace.army.mil/ 

Coastal and Hydraulics Laboratory
http://chl.erdc.usace.army.mil/

Engineer Research and Development Center
http://www.erdc.usace.army.mil/

mailto:Mitchell.E.Brown@usace.army.mil
http://chl.erdc.usace.army.mil/
http://www.erdc.usace.army.mil/
http://chl.erdc.usace.army.mil/
http://www.erdc.usace.army.mil/
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 Governing equation

 Solution

 Model Setup
► Duration: 24 hrs
► Ramp: 0.0 hrs
► Time step: 1,10 min
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Advection only
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Advection, diffusion, and sink
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 Governing Equations

 Solution

 Temporal Scheme

Tidal Propagation in 
a Rectangular Basin

 No bottom or wall friction
 No advection
 No diffusion
 No Coriolis
 Duration 10 days
 Grid:
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 Governing equation

 Solution

 Model setup
► Time step: 10 min
► Duration: 48 hrs
► Ramp: 3 hrs
► Wind speed: 10 m/s

a Dgh C W W
y
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Long-wave Runup over a 
Planar Frictionless Slope

Parameter Value
Time step 0.1 s
Simulation 
duration

360 s

Ramp duration 0.0 s
Wetting/drying 
depth

0.01 m

Wall friction Off
Mixing terms Off
Bottom friction Off
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Transcritical Flow over a Bump
Parameter Value
Flow discharge 0.18 m3/s
Downstream 
water depth

0.33 m

Bottom Friction None

Parameter Value
Time step 0.0781-20 s
Simulation duration 3 hr
Ramp duration 2.75 hr
Wall friction 0ff
Manning’s coefficient 0.0 s/m1/3
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Rectangular Flume with a Sudden 
Expansion

 Time step: 30 sec
 Simulation duration: 1 hr
 Ramp duration: 30 min
 Manning’s coefficient: 0.015
 Turbulence model:      

Mixing-length

Stretched telescoping grid
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Large-Sediment Transport Facility
Flow and Sediment 
 Time step: 1 min
 Simulation duration: 3 hr
 Ramp duration: 2.5 hr
 Grain size: 0.15 mm

Wave and Roller
 Steering interval: 0.25 hr
 Wave breaking: Battjes and 

Janssen (1978)
 Roller dissipation: 0.05
 Roller efficiency: 0.5
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Planar Sloping Beach with Oblique 
Incident Regular Waves
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Roller
No Roller
Measured

 Wave height: 0.078 m
 Wave period: 1.02 s
 Incident angle: 15.4º
 Time step: 1 min
 Simulation duration: 3 hr
 Ramp duration: 2 hr
 Steering interval: 20 min
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Laboratory Study of an 
Idealized Inlet

Flow
 Time step: 6 min
 Duration: 4 hrs
 Ramp: 3 hrs
 Manning’s: 0.025 s/m1/3

Wave
 Steering interval: 1 hr
 Roller efficiency: 1.0
 Roller dissipation: 0.05 
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Grays Harbor, WA: 1999 Field Study
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 Flow Model
 Water levels from Sta 0
 Nonuniform Cartesian grid

► ~67k cells

 Time steps: 
► Implicit: 15 min
► Explicit: 0.5 sec

 Duration 27 days
 Manning’s: 0.018 s/m1/3

Wave Model
 Steering interval: 3 hr
 Waves from Buoy
 Same grid as flow model
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Grays Harbor, WA 2001 Field Study

 6 Tripods deployed from 
May 5 to July 2001

 Weekly topo and 
monthly bathy surveys 
along 50-200 m spaced 
transects

 Grab sediment samples 
taken at tripod locations
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Field Conditions
 Morphology transitioning from 

dissipative to intermediate 
planforms (Wright and Short 
1984)
► Onshore migration of a 

crecentric bar
► Mini rips and mega cusps
► Meandering longshore current

 Influence by inlet
► Wave refraction over ebb shoal
► Strong ebb/flood currents
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Model Setup
 Forcing

► Tide from Westport Harbor 
(corrected phase)

► Winds from NCDC Blended Sea 
Winds

► Waves from CDIP buoy (42 m 
depth)

► River flows from USGS

 Hydro and sediment transport
► 10 min time step
► Ramp of 5 days

 Waves
► 2 hr steering interval

 30 day simulation (~10 hrs PC)
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Sediment Transport Setup
 Grain size distributions?

► Expect coarser on bar and 
beach face and finer in 
trough

► No before and after

 Spatially constant initial 
grain size distribution

 Lund-CIRP transport 
formula

 Bed porosity = 0.3
 Adaptation coefficient
 10 bed layers
 Initial thickness of second 

layer and below = 0.5 m

(1 )t s b s sL r L r L= − +

10mbL = / ( )s s sL Uh α ω= 0.3sα =

/ ( )t t sUh Lα ω=
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Computational Grids
CMS-Flow gridCMS-Wave grid

55k cells

200k cells
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Current velocities (May 14, 2001)

Transition Region
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Current velocities (May 6, 2011)
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Results - Bed Change

 Areas of calculated 
deposition and erosion are 
highlighted with black 
polygons

 Similar erosional and 
depositional trends 
► Erosion of outer bar
► Deposition at inner bar face
► Erosion of inner trough face

 Measured bed change 
shows more variability

Measured Computed

Transition 
region

Periodic 
features
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Transects
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Measured

Calculated
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