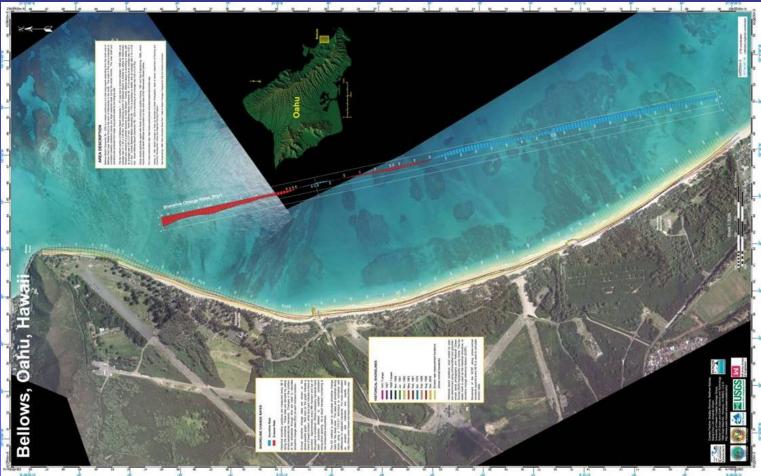


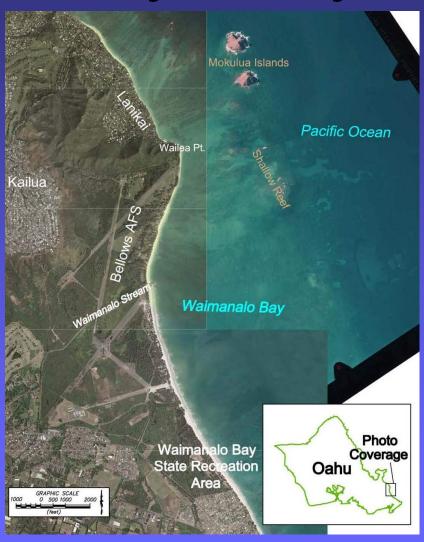
Bellows Air Force Station Beach Nourishment



August 27, 2008

Bellows AFS Shoreline Change Rates

Purpose of Study



- Nourishment of Bellows Beach to offset sand deficit incurred by construction of revetments
- Protect upland development and improve sections of eroded beach
- Increase recreational use of coastline
- Alternatives include beach nourishment and removal of revetments
- Study findings include quantification of sand volume needed, sand source identification, and quantities of sand available offshore

Study Vicinity

Study Location

Revetment Location

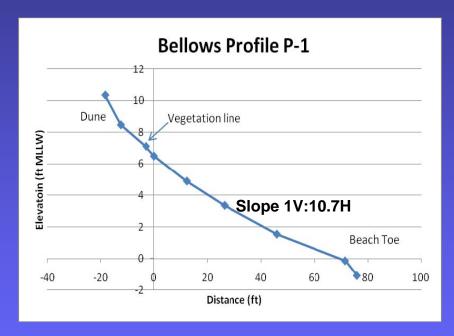
Existing Conditions

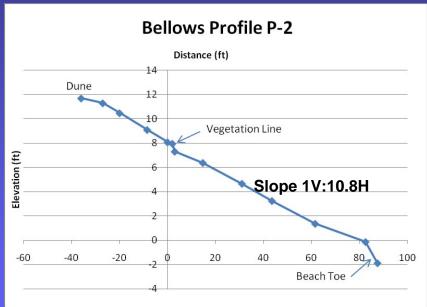
- Revetments
- Exposed Tree Roots
- Miscellaneous Debris
- Rock Retaining Walls
- Variable Beach Widths

Existing Conditions

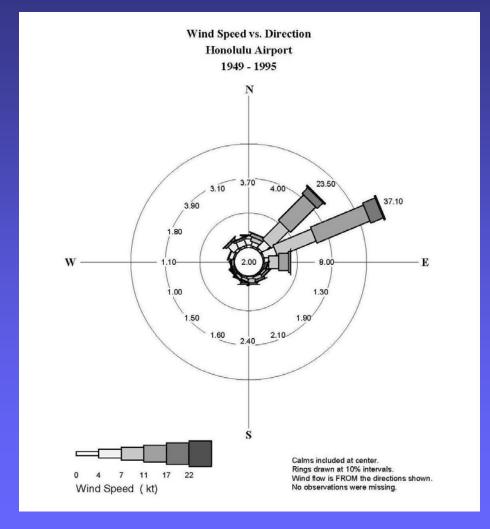
Existing Conditions

Beach Profile Locations

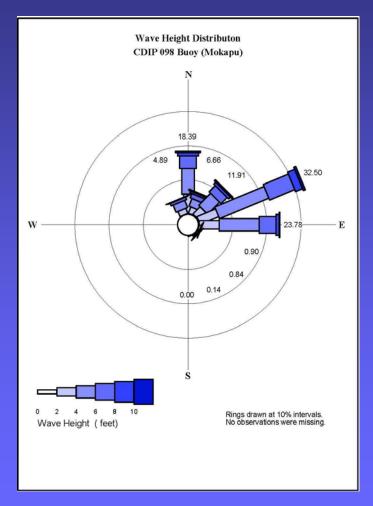


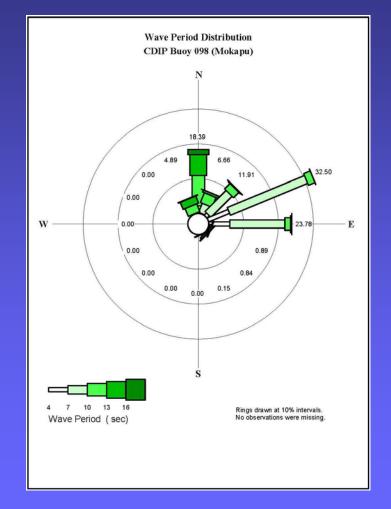


Beach Profiles


Wind & Waves

Wind Speed & Direction


Wind Rose Diagram for Honolulu International Airport, 1949-1995



Wave Distribution – CDIP Bouy 098 (Mokapu)

Wave Climate

- Directional distribution of wave heights and wave periods determined from UH's Mokapu buoy data
- Waves are predominantly out of the east through northeast
- North swells impact the study area

Wave Modeling

- Input Wave Conditions:
 - -D = 0 degrees, T = 14 seconds, H = 6 feet
 - -D = 45 degrees, T = 8 seconds, H = 6 feet
 - -D = 90 degrees, T = 9 seconds, H = 8 feet
- East through northeast waves bracket the trade wind wave energy
- Water Levels Considered:
 MSL and MHHW plus 1.0 feet

Bellows Beach – Bathymetric Map

Bathymetric Contours – Contours are in feet relative to MLLW in 2-foot intervals.

Wave Crest Orientation

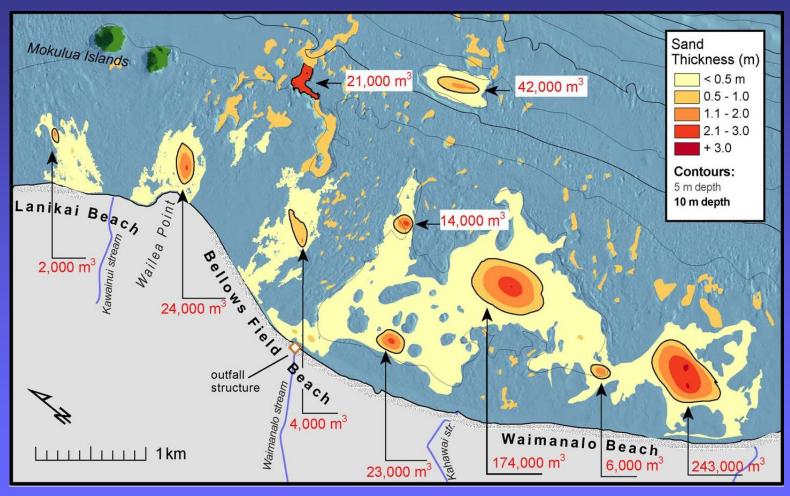
** Wave Conditions for numerical model BOUSS2D, Dir = ENE, H_s = 6 ft., T = 8 s

Sand Sources

Hawaii DLNR Beach Sand Guidelines

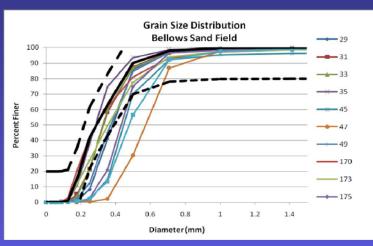
- Must not contain more than 6% silt material (sand grain size smaller than 0.074 mm)
- Must not contain more than 10% coarse material (sand grain size greater than 4.76 mm)
- Must have a grain size distribution that falls within 20% of the existing beach grain size distribution
- The overfill ratio of the fill sand shall not exceed 1.5
- No more than 50% of the fill sand shall have a grain diameter less than 0.125 mm
- Must be free of contaminants such as silt, clay, sludge, organic matter, turbidity, grease, pollutants, and others
- Must be dominantly composed of naturally occurring carbonate beach or dune sand.

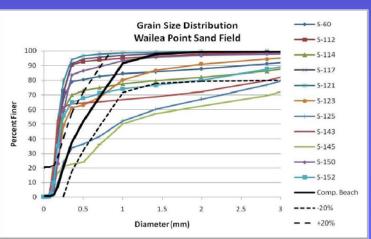
Sand Sample Locations



Sand Source Locations

Possible Sand Sources


	Volume (Cu. Yd.)				
	Fossil Channel	Karst Depression	Sand Field	Total	
Kailua Bay	825,115	150,715	0	975,830	
Lanikai	23,616	43,703	129,987	197,306	
Waimanalo Bay	0	504,396	20,136	524,532	
Total	848,731	698,814	150,123	1,697,668	


- Bellows and Wailea Point sand fields in Waimanalo Bay are likely sources
- Two karst deposits in Waimanalo Bay contain 417,000cy of sand but grain size data is unavailable

Bellows Sand Source Grain Size Distribution

Bellows Sand Field

- 57,660cy Available
- 0.40mm Average Grain Size
- Although coarser than existing beach sand, larger size may provide better beach stability

Wailea Point Sand Field

- 82,740cy Available
- 0.23mm Average Grain Size
- Meets DLNR Beach
 Nourishment Guidelines

Bellows Beach Nourishment

Concept 1

Concept 1 Details

- No structures involved in nourishment
- Nourishment would begin at Wailea Point and end 5,600 feet to the south at Waimanalo Stream
- Designed with minimum 30-foot dry beach
- Vegetation line is at +7 feet above MLLW and the beach face would slope towards the water at a slope of 1V:12H
- 247,400 cubic yards of sand required

Historical Shoreline 1988 Aerial Photograph

Concept 1 Bellows Beach Nourishment

Estimated Construction Cost Concept 1

Item	Quantity	Unit	Unit Cost (\$)	Total Cost (\$)
Site Preparation	1	Job		150,000
Environmental Protection	1	Job		100,000
Sand Fill (Includes Mob/Demob)	247,000	Cu. Yd.	150	37,110,000
Sub-Total				\$37,360,000
Contingency (15%)				5,604,000
Total Cost				\$42,964,000

Bellows Beach Nourishment

Concept 2

Concept 2 Details

- No structures involved in nourishment
- Nourishment would begin at Wailea Point and extend 200 feet past the southern end of the revetment
- Designed with a 30-foot dry beach in front of existing revetments
- Beach crest would be at +6 feet above MLLW and the beach face will slope towards the water at 1V:12H
- Shoreline bulge may lead to increased erosion due to its irregularity from the rest of the shoreline
- 105,600cy of sand will be required

Concept 2 Bellows Beach Nourishment

Estimated Construction Cost Concept 2

Item	Quantity	Unit	Unit Cost (\$)	Total Cost (\$)
Site Preparation	1	Job		150,000
Environmental Projection	1	Job		100,000
Sand Fill (Includes Mob/Debmob)	105,600	Cu. Yd.	150	15,840,000
Sub-Total				\$16,090,000
Contingency (15%)				2,414,000
Total Cost				\$18,504,000

Bellows Beach Nourishment

Concept 3

Concept 3 Details

- Existing revetment would be removed
- Would create a more natural shoreline orientation
- Vegetation line would equilibrate as much as 52 feet inland
- Adjacent upland structures would be affected by this conceptual plan

Concept 3 Beach Nourishment – Bellows Beach

Estimated Construction Cost Concept 3

Item	Quantity	Unit	Unit Cost (\$)	Total Cost (\$)
Site Preparation	1	Job		150,000
Environmental Protection	1	Job		100,000
Revetment Removal (Includes Mob/Demob, 15% Contingency)	2,600	LF	200	460,000
Total Cost				\$710,000

<u>Additional Costs Incurred from Shoreline Recession:</u>

- Loss of existing cabins
- Loss of revenue from cabins
- Property damage to loss of existing usable land

Concept Cost Comparison

Concept 1

• Initial Volume: 247,400 CY

Renourishment Interval: 12 Yrs

• First Cost: \$42 M

• 50-Yr Total Cost: \$95 M

Concept 1

Initial Volume: 105,600 CY

Renourishment Interval: 10 Yrs

• First Cost: \$19 M

• 50-Yr Total Cost: \$55 M

Concept 3

Revetment Length: 2,600 LF

• First Cost: \$710,000

Loss of Land: N/A

Loss of Structures: N/A

Loss of Revenue: N/A

• 50-Yr Total Cost: Unknown

THANK YOU