<u>Sediment Impact Analysis Method (SIAM):</u>

Chris Haring

US Army Corps of Engineers

Sediment Impact Analysis Method (SIAM)

- Initial development through ERDC/Colorado State University research effort on channel stability as part of Demonstration Erosion Control project. Originally conceived to assist with locating grade control structures.
- Original computer programming done by David Mooney (CSU PhD candidate, USBR).
- Incorporation into HEC-RAS through ERDC/HEC cooperative effort.

US Army Corps of Engineers

Question: What is SIAM?

Answer: A reach average sediment continuity assessment tool.

US Army Corps of Engineers

SIAM is incorporated in HEC-RAS Hydraulic Design Module

E HE	C-RAS 4.0		
File E	idit Run View Options Help		
Project: Plan: Geome Steady. File Type Options View Help	try:		
Trit Bridge Scour Unifrom Flow Stable Channel Design Sed Stable Channel Design Sedment Transport Capacity Reach: River SIM Reach: DS RS: Bed Math Hydrol Sed Prop. Sources Hydro Sed Prop. Sources Sampling 0 Class diam.(mm) S. FM 0.008 S. FM 0.016 S. FM 0.015 S. CS 1 10. VCS 2 11. VFG 4 12. VCG 64 13. MG 16 14. GG 32 15. VCG 64 16. SB 512 19. MB 1024 20. LB 2048		Short ID: Apply Update Plot Compute Tables	provides basis of SIAM application. HEC-RAS interface expedites data entry. HEC-RAS provides reach averaged hydraulic parameters.
L Select a Sediment Reach	Engineer	Research & D	evelopment Center

SIAM is reach-based

A reach-based sediment continuity model. Uses reach averaged hydraulic parameters for sediment transport computations by grain size class.

Local Sediment Balance (Continuity)

Local sediment balance by comparing computed annual transport capacity with bed material supply on a reach-by-reach basis.

1	otal Bed Ma	terial Bu	lget - Gre	nada Worl	cshop		
E	ile <u>T</u> ype						
	HD File	▼ Re	aches	A	ggradation/D)egradation (tons/year)	
Í	Table	Plot]				
	Sed Reach	Existing	Coarse	Coarse+Fine	CB+FB+LT		
	BasketCree	-1563	-1563	-1563	-1563		
	SenatobiaC	-1.22E+04	-1.22E+04	-1.22E+04	-4.82E+04		
	Hickahala1	6.29E+04	6.29E+04	4.29E+04	6943		
	Hickahala2	1.04E+05	1.04E+05	8.43E+04	8.43E+04		
	Hickahala3	-3.12E+04	-3.12E+04	-3.12E+04			
	Hickahala4	2.06E+04	8601	8601	8601		
	Hickahala5	-3045	-1.90E+04	-1.90E+04	-1.90E+04		
	Red values in	dicate bed d	egradation				
	Blue values in						
	Green values						Close

US Army Corps of Engineers

SIAM bed/wash material accounting

Total Sediment

Bed Material

- Found in significant quantities in the bed
- Function of hydraulic regime
- Interacts with bed more geomorphic effect (work) on channel development
 - Long-term impacts, may take years/decades to see effects.

Wash Load

- Not found in significant quantities in the bed
- Function of supply
- Minimal interaction with bed more aesthetic or water quality effects
- Generally moves through system quickly

US Army Corps of Engineers

Question: What SIAM is not?

Answer: A sediment routing model or a sediment source/erosion predictor

US Army Corps of Engineers

SIAM is not a routing model....

- Cross section geometry is not adjusted, and sediment transport is not recomputed accordingly.
- Input geometry represents a "snapshot" that is assumed representative of average conditions for determination of sediment transport capacity.
- There is no temporal aspect (i.e., no time stepping through a hydrograph). Results are computed as average annual values.

US Army Corps of Engineers

SIAM is not a sediment source/erosion predictor....

Sediment source input is user specified, both in quantity and grain size distribution.
Sediment source loads are assumed uniform over the reach.

US Army Corps of Engineers

Question: What is applicability of SIAM?

Answer: A screening tool for rapid assessment of the impacts of channel modification or stream rehabilitation measures on sediment continuity.

US Army Corps of Engineers

SIAM Example Application

Kankakee River, IL

US Army Corps of Engineers

SIAM Modeling for the Kankakee River

- Hydrologic Engineering Center River Analysis System (HEC-RAS)
- HEC-RAS model simulates average hydraulic properties of each reach defined in the river.
- SIAM = Sediment Impact Analysis Methods
 - Sediment load data: grain size and bed material gradations determine wash load/bed load division.
 - Sediment transport capacity: Hydraulics and wash load/bed load criteria determine sediment transport capacity.
- Taken together, Hydraulic Model, Sediment Input, and Sediment Model determine wash material / bed material supply and capacity for each reach and local balance.

23

BUILDING STRONG®

US Army Corps of Engineers

US Army Corps of Engineers

Kankakee River Basin Sources of Fine and Coarse Sediment

US Army Corps of Engineers

US Army Corps of Engineers

Kankakee River Conceptual Sediment Budget

<section-header><figure>

SIAM Modeling Reaches for the Kankakee River Basin

Lower RM	Upper RM	Reach	Description	Reach Dist (mi.)
0.0	5.9	LK1	Kankakee R. mouth to Wilmington gage	5.9
5.9	9.2	LK2	Kankakee R. flat gradient u/s of Wilmington gage	3.1
9.2	10.3	LK3	Kankakee R. steep reach d/s of Wilmington dam	0.9
10.3	17.3	LK4	Pool of Wilmington dam	7.0
17.3	26.0	LK5	Kankakee R. u/s of Wilmington pool to near Davis Creek	4.7
26.0	32.4	LK6	Kankakee R. near Davis Creek to Kankakee dam	5.7
32.4	36.3	LK7	Six Mile Pool to Iroquois R.	3.9
36.3	45.4	MK1	Kankakee R. from Iroquois R. to Momence sill	8.5
45.4	48.5	MK2	Momence sill to Momence	2.0
48.5	50.6	MK3	Momence to Singleton Ditch	1.9
50.6	57.7	MK4	Singleton Ditch to IL/IN state line	6.5
57.7	79.6	MK5	IL/IN state line to halfway to Yellow R.	21.8
79.6	99.3	MK6	To confluence of Yellow R.	18.7
99.3	110.9	UK1	Kankakee R. u/s of Yellow R, lower	11.6
110.9	126.9	UK2	Kankakee R. u/s of Yellow R, upper	16.0
126.9	13.8	LII	Mouth to Sugar Creek	13.0
13.8	27.1	LI2	U/S of Sugar Creek	12.2
27.1	21.1	¥1	Lower Yellow R.	21.0
21.1	40.4	Y2	Upper Yellow R.	19.4

BUILDING STRONG

i - i

of Engineers

US Army Corps of Engineers

3 Alternative Options Modeled with SIAM

- 1. Reduction in total sediment source load by 20 percent from existing condition levels for specified reaches
- 2. Channel re-meandering and flood plain reconnection in sediment reaches MK5 and MK6
- 3. Dredging in Six Mile Pool

Combinations of these 3 options created 35 different alternatives.

Following 6 slides illustrate the kinds of outputs and indicate types of findings.

34

BUILDING STRONG®

US Army Corps of Engineers

1E

1E

Alternative 1E

1E

1E

Alternative 1E % Reduction in SIAM Bed Material Supply Load

Alternative 2J % Reduction in SIAM Total Sediment Load

	Kank. River Below Kank. Dam						6MP	Kank. l	J/S Ir. R	iv. to Sl	-	U/S sta	teline	U/S Ye	llow	Ir. Riv.		<u>Yellow</u>	River	
	LK1	LK2	LK3	LK4	LK5	LK6	LK7	MK1	MK2	MK3	MK4	MK5	MK6	UK1	UK2	LI1	LI2	Y1	Y2	
2J						20	20	20	20	20	20	20	20	20	20	20	20	20	20	2J

Alternative 3B
% Reduction in Total Sediment Load (downstream from Alternative 3B)

		Kank. I	River Be	elow Ka	nk. Dar	n		6MP	Kank. l	J/S Ir. R	iv. to Sl	_	U/S stateline U/S Yellow				Ir. Riv.		Yellow	River	
Read	ch	LK1	LK2	LK3	LK4	LK5	LK6	LK7	MK1	MK2	MK3	MK4	MK5	MK6	UK1	UK2	LI1	LI2	Y1	Y2	Reach
									20	20	20, S	20	re.	re.	20	20	20	20	20	20	

Alternative 2J % Reduction in SIAM Total Bed Material Supply Load

	Kank. F	River Be	low Ka	nk. Dar	n		6MP	Kank. l	J/S Ir. R	iv. to Sl	-	U/S sta	ateline	U/S Yel	low	Ir. Riv.		Yellow	River	
	LK1	LK2	LK3	LK4	LK5	LK6	LK7	MK1	MK2	MK3	MK4	MK5	MK6	UK1	UK2	LI1	LI2	Y1	Y2	
2J						20	20	20	20	20	20	20	20	20	20	20	20	20	20	2J

Alternative 3B % Reduction in SIAM Total Bed Material Supply Load

	Kank.	River Be	elow Ka	nk. Dar	n		6MP	Kank. U/S Ir. Riv. to SL				U/S sta	teline	U/S Yel	low	Ir. Riv.		Yellow	River	
Reach	LK1	LK2	LK3	LK4	LK5	LK6	LK7	MK1	MK2	MK3	MK4	MK5	MK6	UK1	UK2	LI1	LI2	Y1	Y2	Reach
								20	20	20, S	20	re.	re.	20	20	20	20	20	20	

SIAM Results General Observations

- Reduction in watershed suspended loads (silt and clay) persisted downstream to the Illinois River
- Reduction in incoming sand loads shifted the local balance towards degradation, but the shift did not persist significantly downstream
- Reducing bank erosion shifted river to eroding the sand bed locally and no net change downstream
- Re-meandering river caused increased deposition locally and reduced deposition just downstream

41

 The outcomes above reflect short-term effects of modified conditions

BUILDING STRONG®

of Engineers

US Army Corps

Kankakee River Basin Projects Potential Next Steps

- Develop and assess additional alternatives
- Examine longer time periods of change
- Evaluate management actions that best achieve alternatives
- Develop a recommended plan that most effectively accomplishes the goal of Kankakee River sediment reduction and habitat restoration
- Implement the management actions in the recommended plan

BUILDING STRONG®

US Army Corps of Engineers

