### Addressing Nearshore Placement Near Lake Worth Inlet, FL

Drew Condon, Ph. D., P.E.

**Coastal Engineer** 

**Coastal Design Section - SAJ** 

20 April 2017

*Team of Professionals Making Tomorrow Better* 





US Army Corps of Engineers BUILDING STRONG®









### Background – Lake Worth Inlet



- Federally maintained inlet since 1934
  - North and south jetties, channel, turning basin, inlet revetments, and settling basin
- Final Integrated Feasibility Report and EIS (Jan 2014) report shoaling rates of approximately 117,500 cy/yr
- Beach quality material placed either on the dry beach or in the nearshore below MHW to the -17 ft MLW contour between 500 ft south of R-76 to R-79
- Where is optimal placement?









- To create wave regime in Nearshore: Hypercube method adopted from South Palm Beach Island Comprehensive Shoreline Stabilization Project: EIS by CB&I
  - Based on WIS data
  - Offshore dir. Bands generating 95% of the nearshore energy (5° to 155 °)
  - Six directional bins ~ equal wave energy
  - ► Each bin → three height classes ~ equal wave energy in shallow water
  - 18 wave cases plus calm

| Wave | Hs   | Тр    | Wave     | % Occur.    | Days in Model in |
|------|------|-------|----------|-------------|------------------|
| Case | (m)  | (sec) | Dir. (°) | In One Year | One Year         |
| 1    | 0.89 | 9.35  | 37.93    | 5.52        | 20.15            |
| 2    | 1.13 | 5.64  | 119.07   | 4.11        | 15.00            |
| 3    | 2.98 | 10.09 | 18.06    | 0.93        | 3.39             |
| 4    | 1.84 | 10.10 | 29.55    | 1.53        | 5.58             |
| 5    | 2.06 | 6.98  | 74.42    | 1.11        | 4.05             |
| 6    | 1.59 | 7.80  | 51.83    | 1.84        | 6.72             |
| 7    | 1.04 | 7.60  | 16.90    | 8.26        | 30.15            |
| 8    | 2.54 | 9.87  | 37.90    | 0.67        | 2.45             |
| 9    | 0.68 | 5.30  | 119.89   | 11.75       | 42.89            |
| 10   | 1.86 | 8.72  | 17.13    | 2.44        | 8.91             |
| 11   | 1.92 | 6.51  | 121.16   | 1.17        | 4.27             |
| 12   | 0.81 | 7.01  | 77.08    | 7.45        | 27.19            |
| 13   | 2.67 | 10.84 | 29.20    | 0.7         | 2.56             |
| 14   | 1.68 | 9.58  | 38.03    | 1.57        | 5.73             |
| 15   | 1.01 | 8.78  | 26.61    | 5.31        | 19.38            |
| 16   | 2.38 | 8.56  | 51.10    | 0.75        | 2.74             |
| 17   | 1.37 | 6.51  | 76.13    | 2.91        | 10.62            |
| 18   | 0.89 | 8.36  | 52.20    | 5.43        | 19.82            |
| Calm | 0.30 | 6.00  | 20.00    | 36.55       | 133.41           |









- Limited data available
  - ► Calibration to water levels:
    - NOAA Port of Palm Beach
  - Validation with ADCP data
    - Collected over Spring and Neap periods in 2008
- Current magnitude slightly underestimated
  Doubled tidal amplitude to "bracket" expected conditions











- CMS model run for year-long simulations
  - Both regular tidal constituents and doubleamplitude constituents
  - ► 3 hour wave coupling
  - ► 3 different randomizations of the wave climate with yearly percent occurrence as presented
  - ► Total of 6 year long simulations
- Cumulative velocities analyzed to identify nodal point





## **Nodal Point Analysis**



#### **BUILDING STRONG**





### **Nodal Point Analysis**



#### **BUILDING STRONG**





Team of Professionals Making Tomorrow Better







- ~ 120,000 cy/yr should be dredged from the channel and placed in the nearshore
- Four nearshore placement scenarios were developed to replicate placement of approximately 120,000 cy
  - Alternative 1: Between R-77 and R-78, 4 ft added between the -10 and -17 ft MSL contours
  - Alternative 2: Between R-77 and R-79, 2.5 ft added between the -10 and -17 ft MSL contours
  - Alternative 3: Between R-77 and R-79, 4 ft added between the -12 and -17 ft MSL contours
  - Alternative 4: Between R-78 and R-79, 6 ft added between the -8 and -17 ft MSL contours





# Wave Energy Analysis





Team of Professionals Making Tomorrow Better

Easting (m)

x 10<sup>5</sup>

Easting (m)

x 10<sup>5</sup>









- Total cumulative wave energy was estimated as the square of the wave height
- Approximated along a north-south running profile at the -5 ft MSL water depth





### Alternatives







Team of Professionals Making Tomorrow Better

.S.ARM

### Alternatives







Team of Professionals Making Tomorrow Better

.S.ARM





 Sediment Mobility Tool applied at 7 different cross-shore depths assuming median grain size, d<sub>50</sub>, of 0.14 mm

|           | Linear Wave       | Theory        | Stream Function Wave Theory |                            |  |
|-----------|-------------------|---------------|-----------------------------|----------------------------|--|
|           | Freq. of Sediment | Mean Mobility | Freq. of Sediment           | Mean Mobility              |  |
| Depth (m) | Mobility          | Score <m></m> | Mobility                    | Score <m<sub>u&gt;</m<sub> |  |
| 3.04      | <b>99.9%</b>      | 3.61          | 100%                        | 4.69                       |  |
| 4.57      | <b>99.9%</b>      | 2.15          | <b>99.9%</b>                | 3.53                       |  |
| 6.10      | 93.6%             | 1.45          | 99.9%                       | 2.84                       |  |
| 7.62      | 93.6%             | 1.01          | 99.9%                       | 2.29                       |  |
| 9.14      | 93.5%             | 0.67          | 93.6%                       | 1.87                       |  |
| 10.67     | 82.0%             | 0.43          | 93.6%                       | 1.53                       |  |
| 12.19     | 41.3%             | 0.25          | 93.6%                       | 1.26                       |  |

Dean number used to predict cross-shore sediment

migration

d\_{50} (mm)Predicted Sediment Migration0.172% Erosive, Offshore Migration0.1484% Accretion, Onshore Migration0.297% Accretion, Onshore Migration0.3100% Accretion, Onshore Migration0.4100% Accretion, Onshore Migration0.5100% Accretion, Onshore Migration







- North South velocity nodal point located around R-77
  - Material placed north of this will likely end up in the inlet
  - Nearshore placement should be confined between R-77 and R-79
- Reduction of wave energy varies by placement layout, between 5 and 75%
  - Smaller the negative freeboard, the greater the energy reduction
- Sediment is likely to mobilize and move onshore
  - SMT predicts mobilization is highly probable
  - Dean number predicts that when mobilized sediment will migrate onshore
- Wave climate randomizations all produced similar average and cumulative current results









Thank you!









- Bonanata, R., R. Medina, L. Silveira, L. Benedet. 2010. Metodologia pare la caracterización del clima marítimo. In VI Cong. Argentino de Ingenieria Portuária, 1-14.
- Larson, M. and Kraus, N. C. 1992. Analysis of cross-shore movement of natural longshore bars and material placed to create longshore bars. U.S. Army Engineer Waterways Experiment Station, Vicksburg, M.S.: Technical Report DRP-92-5.
- McFall, B. C., S. J. Smith, C. E. Pollock, J. Rosati, III, and K. E. Brutsché. 2016. *Evaluating* sediment mobility for siting nearshore berms. ERDC/CHL CHETN-IV-108. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Sanchez, A., W. Weiming, T. M. Beck, H. Li, J. Rosati, III, R. Thomas, J. D. Rosati, Z. Demirbilek, M. Brown, and C. Reed. 2011a. U.S. Army Corps of Engineers Jacksonville District. 2012. *Geotechnical data report for Palm Beach Harbor Maintenance Dredging 33-foot Project, Palm Beach County, Florida*; Section 00 31 32. U.S. Army Corps of Engineers – Geotechnical Branch -Engineering Division - Jacksonville District. Published 20 July 2012.
- U.S. Army Corps of Engineers Jacksonville District. 2014. Final integrated feasibility report and environmental impact statement: Lake Worth Inlet, Palm Beach Harbor, Palm Beach County, Florida.
- U.S. Army Corps of Engineers Jacksonville District. 2016. Southern Palm Beach Island comprehensive shoreline stabilization project. Final Environmental Impact Statement.

