RESILIENCE AND REGIONAL SEDIMENT MANAGEMENT

Katherine Touzinsky
Research Physical Scientist
USACE-ERDC-CHL

Regional Sediment Management In Progress Review
16 May 2017, Portland District

“The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.”
OUTLINE

• What is resilience?
• What are some best practices for resilience?
• How is resilience measured?
• R&D Update: Coastal Resilience Metrics & Applications
 • Project I: Southeastern Seaboard Ports and Hurricane Matthew
 • Project II: Dune and Beach Resilience Parameters
 • Project III: Pilot Coastal Resilience Index
RESILIENCE FOR COASTAL SYSTEMS

Definition of Resilience: the capacity to

• **Anticipate and plan** for disruptions,
• **Resist loss** in operations and/or **absorb the impact** of disturbances or stressors,
• **Rapidly recover** afterwards, and
• **Adapt** to short- and long-term stressors, changing conditions and constraints.
RESILIENCE FOR COASTLINES – EXAMPLE BAY COMMUNITY

• **Prepare** - Anticipate weak links, be ready to recover, build partnerships.
• **Resist** - Provide diverse and redundant protection.
• **Recover** - Ensure availability of alternate networks, prepare independent and complimentary components

• **Adapt** – foster natural and human actions to facilitate adaptation
NATURE OF THE BEAST – STRESSORS AND DISTURBANCES

Potential loss in relative functionality over time (e.g., no maintenance, greater demand, or increasing environmental forcing)

1. Disturbances - short-term recovery
2. Stressors - Slow motion disasters
RESILIENCE TIMELINE

Functionality

Time

Prepare; Anticipate

Resist; Withstand

Recover; Bounce Back

Adapt; Evolve

Rebuilding, new projects, community awareness, etc.

Disturbance

Disturbance

Resilience increased:
- Less loss in functionality
- Faster recovery time
QUANTIFYING RESILIENCE
Knowledge and Frameworks to Assess Resilience

Parameters of Resilience Assessments:
- **Critical Function** – component function essential to system performance
- **Threshold** – level of acceptable performance
- **Time** – stages of event cycle, including impact, recovery, and adaptation
- **Memory** – understanding past performance and progressive change in the system

Assessment Methods:
- **Scorecard Index**
- **Matrix**
- **Input-Output Network**

Increasing system customization, assess performance over time
Decreasing data needs, assess general system performance
PROJECT I: IMPACTS OF HURRICANE MATTHEW ON THE SOUTHEASTERN SEABOARD

Katherine Touzinsky, Brandon Scully, Marin Kress, Ned Mitchell, ERDC-CHL

RSM and Resilience: Define resilience metrics for navigation mission; proxy indicators for port function and performance of navigation channel. How can RSM actions improve preparations and recovery for coastal storms?
TANKER AND CARGO VESSEL HEAT MAPS
NAVIAGTION RESILIENCE METRIC – NET VESSEL COUNT

PREPARE RESIST RECOVER

Captain of the Port declares ZULU on 10/06 at 1800

POS reopens to vessel traffic on 10/12 at 0700

Hurricane Matthew declared a tropical storm 9/28

Bayesian network change point analysis - Return to “normal” 10/18

Net vessel count
Net vessel daily average

Port of Savannah – Cargo and Tanker Net Vessel Counts
POS dwell time greatly increased because channel was unavailable until 10/12 – 6 days after closure
PROJECT II: DUNE AND BEACH RESILIENCE METRICS

Marty Durkin, SAJ

RSM & Resilience - Suggest resilience metrics for dune and beach Coastal Storm Risk Management (CSRM) and RSM projects using Beach-fx output data
DUNE & BEACH RESILIENCE METRIC

• Buffer width (BW) – a measurement similar to the USGS Beach Closure. The combined horizontal distance of the dune width, seaward dune slope, and berm width.
• Based on the simplified representative profiles used in the Beach-fx
BUFFER WIDTH OVER 50 YEARS FROM BEACH-FX CALCULATIONS

Time (days from start of simulation, 2015)

Buffer Width (feet)

- Red: +00’dune +60’berm
- Blue: +10’dune +40’berm
- Green: +20’dune +20’berm
- Black: FWOP
BUFFER WIDTH OVER TIME

![Graph illustrating buffer width over time with phases labeled as "Disturbance", "Anticipate", "Resist", "Adapt", "Recover", and "Bounce Back".]

- **100% Functionality**
 - Initial Construction
 - Periodic Nourishment
 - Adapt; Evolve
 - Disturbance
 - Periodic Nourishment
 - Wear

- **Legend**:
 - Red: +00'dune_+60'berm
 - Blue: +10'dune_+40'berm
 - Green: +20'dune_+20'berm

(Additional details and explanations may be provided based on the diagram's context.)
PROJECT III: PILOT COASTAL RESILIENCE INDEX
Nicole Elko, ASBPA, Quin Robertson and Zhifei Dong, CB&I

RSM and Resilience: Create the groundwork for a national coastal resilience tool to help understand how RSM and CSDR actions change local and regional resilience
METHOD – BEACH PARAMETERS

• Pilot CRI considers five beach parameters: Protective Width (PW), Protective Elevation (PE), Volume Density (VD), Wave Runup (WR), Crest Freeboard (CF)
• Developed scripts to process LIDAR data or beach surveys to extract parameters and create profile plots:
COASTAL RESILIENCE INDEX (CRI) MODEL

Five non-dimensional factors based on beach, storm and wave parameters:

\[
\begin{align*}
 a &= \frac{PE}{PE_0} \\
 b &= \frac{PE \cdot PW \cdot (1 - s)}{PE_0 \cdot PW_0} \\
 c &= \frac{PW - MR}{PW_0} \\
 d &= \frac{DE - (MS + MHW)}{CF_0} \\
 e &= \frac{WR_0}{WR}
\end{align*}
\]

\[CRI = a + b + c + d + e\]

\[\begin{align*}
 a &= \text{PE (Protective Elevation) factor} \\
 b &= \text{VD (Volume Density) factor} \\
 c &= \text{PW (Protective Width) factor} \\
 d &= \text{CF (Crest Freeboard) factor} \\
 e &= \text{WR (Wave Runup) factor}
\end{align*}\]
CALCULATING CRI FOR DELRAY BEACH, FL

32 survey datasets between 1975 and 2016
6 periodic beach (re)nourishment projects and 2 storm repair projects
Storm and wave parameters set as constant during calculation
CRI<1.5, Low resilience; 1.5<CRI<2.0, Medium resilience; CRI>2.0, High resilience
DELRAY BEACH APPLICATION

May 1973 before the first project
August 2016
Regional Sediment Management Process

UNDERSTAND REGION
- Identify sediment sources, needs, processes; engineering actions & ecological considerations
- Identify resources, challenges, & stakeholder requirements

ID/EVALUATE RSM STRATEGIES (PROJECT LEVEL)
- Identify efficient/effective use of sediments
- Includes project level analysis utilizing tools, models, technologies
- RSM pilot projects

TAKE ACTION - CONSTRUCT
- Construct, monitor, & adaptively manage a project
- Capture value, benefits, lessons learned
- Incorporate into standard practice

DEVELOP RSM STRATEGIES & OPTIMIZATION (REGIONAL)
- Identify how to coordinate & construct projects; define success criteria
- Includes authorities, funding, permits, timelines, & stakeholders/partnerships

COMMUNICATION, COLLABORATION, COORDINATION
- Interagency, stakeholders, partners, resource agencies

PREPARE
- Understand Region
- Understand Project – level functions
- ID resources, challenges, requirements
- Understand how to coordinate and construct projects; include authorities, funding, permits, partnerships, etc.
- Plan for rapid recovery

RESIST

RECOVER

ADAPT
- Pre-define success criteria
- Monitor and adaptively manage
- Capture value, benefits, and lessons learned
THANK YOU

Katherine.F.Touzinsky@usace.army.mil