
In-reservoir and downstream channel effects of a low-cost sediment bypass options at Tuttle Creek Lake

John Shelley, Ph.D., P.E. Kansas City District River Engineering and Restoration Section

May 2017

US Army Corps of Engineers BUILDING STRONG®

Tuttle Creek Lake: 1957 to 2010

Sediment accumulation = 5.8 million yd³/yr

(* Depth (US Feet)

13. 19

20 - 26

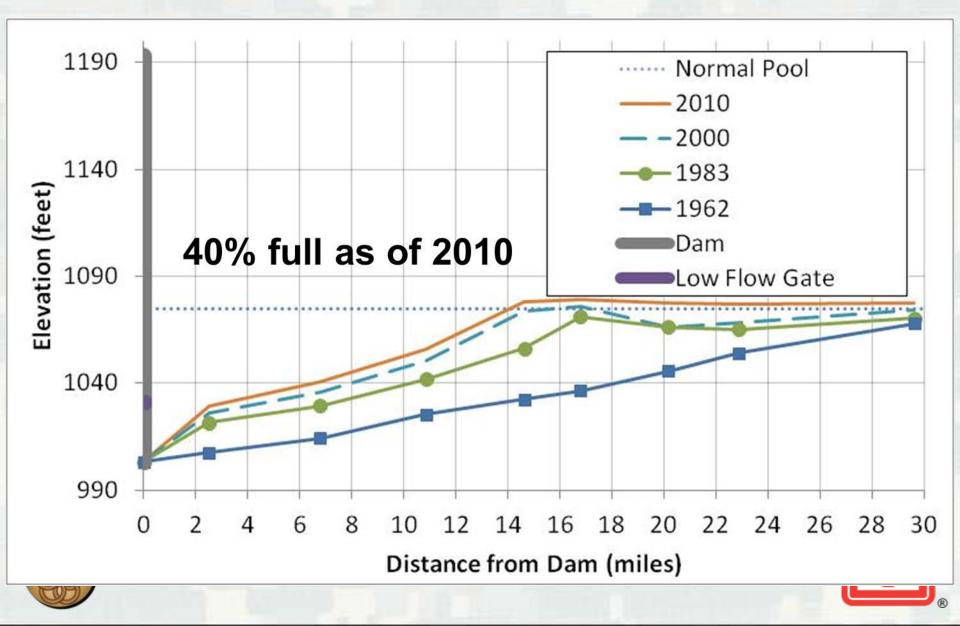
27 ... 325

40 - 46

52 58

59 65

Tuttle Greeklea


Depth (US Feet)

1.7

24	Step.	1.200	а
	8 -	12	
	1.3	19	
	20	26	
	27	32	
	33 -	39	
	40	46	8
	47	51	2
	52	58	
	59	60	
4	Tot	lle C	-

Tuttle Creek/Eake

Tuttle Creek Lake

Lake Dredging Costs of Nearby Lakes

- John Redmond: \$6.5/cu yd
- Mission Lake: \$6.5/ cu yd
- Tuttle would cost more, due to higher land prices
- At \$6.5/ cu yd
 - ►\$38++ million / year

Increasing cost every year, forever

Hydrosuction: A Less Expensive Option

Hydrosuction: A Less Expensive Option

ERDC/CHL LR-15-6 November 2015

Tuttle Creek Dam Siphon Dredging Investigation

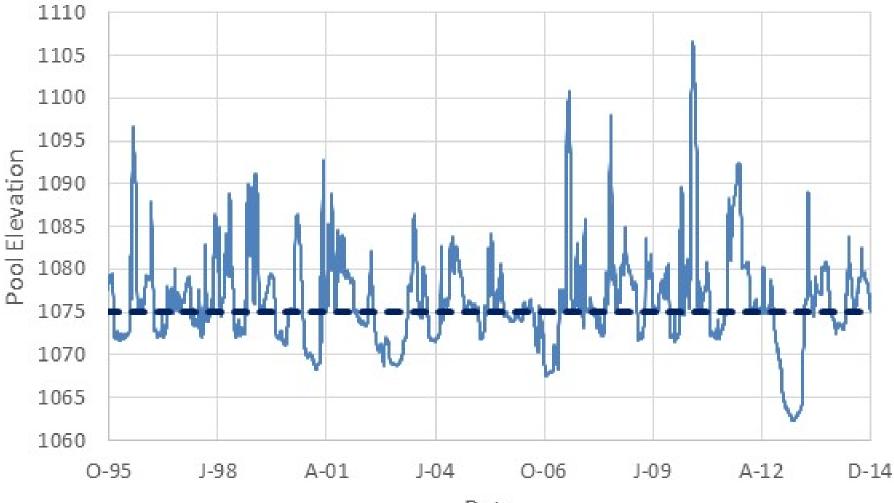
by Dr. Brian C. McFall and Tim L. Welp

Option	Cavitation	Design Flow Velocity [ft/s]	Design Flow Rate (ft ³ /s)	Estimated Production Rate [10 ⁶ yd ³ /yr] (6% solids)	Maximum Pipe Elevation Above Reservoir without Cavitation [ft]
1	Yes	N/A	N/A	N/A	28 - 29
2	Yes	N/A	N/A	N/A	28 - 29
3 (1 Pipe)	No	8.9 - 19.1	28 - 60	2.0-4.2	N/A
3 (2 Pipes)	No	8.9 - 19.1	56 - 120	4.0 - 8.4	N/A

 Table 2: Summary of results for the three (3) design options.

1 pipe: 26 to 54% of annual sediment load 2 pipes: 52 to 109 % of annual sediment load

Assumptions


Constant reservoir pool level

Operating 24/7

Sufficient sediment close to the dam

FY17 Project- Long-term Effectiveness

Date

Downstream Channel: Kansas River

 What if (for water quality reasons) hydrosuction only operated at higher Kansas River flows?

Sediment budget

07/19/2010 12:24

How much volume is close to the dam?

How long could we pass the rate coming into the entire reservoir while removing from a localized area?

Comparison between	1957	& 2010
VOLUME		
Gain		

No Change

Leveraging

- Kansas Water Authority
- Kansas River Water Assurance District No. 1
- Cost Estimating/Dam Safety
- PAS Study (Kansas Water Office Sponsor)
- Sustainable Rivers

Capture Zone (Aprx. 6500 ft)

2-2 ft diam. Flexible HDPE Pipes. 3000 lft each.

2-2 ft diam. Ductile Iron Pipes, 3500 lift each.

2400 linear ft 2-2ft diam. Ductile Iron Pipes. 10 ft diam. tunnel

0 0.125 0.25 0.5 Miles

Order of Magnitude Cost = \$100 million

Payback < 3 years

FY17 RSM IPR District, Title, POC(s)

BLUF: This project assesses the long-term effectiveness of sediment removal from Tuttle Creek Lake and quantifies sediment concentration increases and potential impacts to the downstream Kansas River.

Challenge/Objectives

- Re-do analysis with
 - Historic pool elevations
 - Exhaustible supply of sediment close to the dam
 - Environmental constraints on operation (i.e. no discharge during low flows)

Approach

(including Tools/Models/Data Used)

Hydrosuction spreadsheet

Sediment budget in the downstream Kansas River based on USGS measurements GIS analysis of sediment deposition near the dam

FY17 RSM IPR District, Title

District/Other USACE PDT Members

John Shelley (river engineering) Patrick Miramontez (cost estimating) Tracy Brown (GIS) Kellen Huffman (hydraulic engineering) Erin Reinkemeyer (hydraulic engineering)

Stakeholders and Partners

Kansas Water Office Kansas River Water Assurance District No. 1 Kansas Water Authority Kansas Department of Health and Environment

Leveraging/Collaborative Opportunities Dam Safety Program: Paid to develop a cost estimate

PAS study: Signing for a 50/50 cost shared study (this week?) Take sediment budget the next step to a 1D sediment model

P3 proposal: In limbo now

FY16 RSM IPR District, Title

What is working? Ups? Success?

Internal coordination- Planning, Ops, Dam Safety, Engineering, Cost Estimating

External coordination- KWO, KDHE, KWA, Kansas River Water Supply District

Incremental progress- Sec 204, RSM, DOTS, RSM, → PAS

What is not working? Downs? Issues?

Need real money (design, environmental permitting) that can lead to constructionP3 in limboPilot project under WRDA?

FY17 RSM IPR District, Title

How is this project benefiting the USACE and Nation (efficiency, monetary, technical, relationship building, outreach, etc)

Reservoir sedimentation is a national problem.

Lots of talk. Lots of band aids.

If we do nothing, we will be left with few benefits, huge liabilities, and few options.

Questions?

