Reservoir Sediment Management Options For Long-term Sustainability

John Shelley, Ph.D., P.E. Kansas City District River Engineering and Restoration Section

August 2017

US Army Corps of Engineers BUILDING STRONG

Sediment Management Options

Minimize sediment inflow

Prevention

React to sediment accumulation

Cure

2/30

Reservoir Sediment Sustainability

Lake Dredging Costs

John Redmond: \$6.5/cu yd
Mission Lake: \$6.5/ cu yd
Lake Seminole: \$27/ cu yd
Kanopolis: \$229 / cu yd

Dredging in Perspective

- Cost for dredging all 8 federal reservoirs in the Kansas River Basin:
 - ► At \$6.5/yd³
 - ►\$105+++ million/year
 - ▶\$151/person each year

Health and Environment- Enviornment	\$ 4,440,934
Department of Agriculture	\$ 9,894,366
Kansas Water Office	\$ 1,154,576
Department of Wildlife, Parks, and Tourism	\$ 5,151,993
	\$ 20,641,869

Sediment Bypass

Sediment bypass at Nagle Dam, South Africa (Figure from Annandale 2013) Sediment bypass tunnel at Miwa Dam, Japan (Figure from Annandale 2011)

Sediment Bypass

PRO

Passes sediment during high flows (more natural)

- CON

Very expensive retrofit for existing facilities

► Doesn't pass 100% of sediment

Solis Reservoir, Switzerland

© 2004 Kantonale Verwaltung Graubüns

hydraulic model overview

Downstream Discharge

Effectiveness

Discharge (cfs)

6

16/30

18/30

Draw down the reservoir

19/30

Draw down the reservoir

Draw down the reservoir

Reservoir Flushing: Fall Creek

Reservoir Flushing: Spencer Dam

Reservoir Flushing: Spencer Dam

-En 200

6. 2

27/30

Gebidim Dam Flushing

Reservoir Flushing: Problem!

Reservoir Flushing

3

PROS

- No external power
- No land needed
- Significant sediment removal

CONS

- Uses ALL the water
- Sediment-laded effluent

 high concentration
 short duration
- Potential downstream impacts
- Will not usually flush out the "floodplain" i.e. maintained reservoir storage may be less than the original

Siphon up the sediment

Bucket Demo: https://www.youtube.com/watch?v=A8Wks yl4Nnw&feature=youtu.be

Dredging with Downstream Discharge of Sediments

Go <u>through</u> the dam, abutment, or spillway

Hydrosuction in the United States

- Experimental installation on Grove Lake, NE
 - 3,000 ft 6-inch PVC pipe
 - Sand balance restored for more than 5 years

Hydrosuction Internationally

Santa Maria HPP, Guatemala

39/30

El Canada Reservoir

El Canada Hydrosuction

El Canada Hydrosuction-Connecting to Existing Conduit

Fig. 2.

Bypass connection to existing drainage pipe (a) side view (b) downstream view

Results

■ ≈ 157,000 cy in first 6 months

Year	Concentration	Availability
2012	12%	86%
2013	9%	98%
2014	8%	98%

ERDC/CHL LR-15-6 November 2015

Tuttle Creek Dam Siphon Dredging Investigation

by Dr. Brian C. McFall and Tim L. Welp

Option	Cavitation	Design Flow Velocity [ft/s]	Design Flow Rate (ft ³ /s)	Estimated Production Rate [10 ⁶ yd ³ /yr] (6% solids)	Maximum Pipe Elevation Above Reservoir without Cavitation [ft]
1	Yes	N/A	N/A	N/A	28 - 29
2	Yes	N/A	N/A	N/A	28 - 29
3 (1 Pipe)	No	8.9 - 19.1	28 - 60	2.0-4.2	N/A
3 (2 Pipes)	No	8.9 - 19.1	56 - 120	4.0 - 8.4	N/A

Table 2: Summary of results for the three (3) design options.

1 pipe: 26 to 54% of annual sediment load 2 pipes: 52 to 109 % of annual sediment load

Important: Would require drilling a hole into the side of the current inlet works.

An Option for Tall Dams: Notch The Spillway

An Option for Tall Dams: Notch The Spillway

52

An Option for Tall Dams: Notch The Spillway

Capture Zone (Aprx. 6500 ft)

2-2 ftdiam. Flexible HDPE Pipes. 3000 lft each.

2-2 ft diam. Ductile Iron Pipes, 3500 lft each.

2400 linear ft 2-2ft diam. Ductile Iron Pipes. 10 ft diam. tunnel

6

0 0.125 0.25 0.5 Miles

Summary

- Dredging with land disposal
- Dredging with downstream discharge
- Bypass
- Pass-through (routing, sluicing)
- Drawdown flushing
- Hydrosuction (up-and-over or through)
- Density current venting

