ENTERPRISE DATABASE & TOOLS

Rose Dopsovic, GIS Coordinator
Bowhead Total Enterprise Solutions (BTES) for
The Spatial Data Branch, US Army Corps of Engineers Mobile District

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

R GATI

DATA INTEGRATION FRAMEWORK (DIF)

- A Data Integration Framework (DIF) is combination of processes, standards, people, and tools used to transform disconnected enterprise data into useful, easily accessible information for strategic analysis and reporting.
- The goals of this DIF are to develop a discoverable, easily accessible, and secure information source for USACE and other federal agencies and to act as a model of what might be accomplished across the entire USACE.
- DIF can be applied to different business lines: Navigation DIF (NDIF), Field Research Facility DIF (FDIF)

HISTORY OF ENTERPRISE DATABASES IN USACE

EDB, Web Services, ACE-IT + Cloud

EDB + Web Services, ACE-IT

Enterprise Databases

Local Datasets

File Name

DATA, SERVER, AND WEB SERVICES 3 4 Services Authoritative Authoritative Authoritative 1.1 Data 1.1 Data 1 1 11

• Disparate Data

- No inter-District or Public Access
- Desktop Software Required

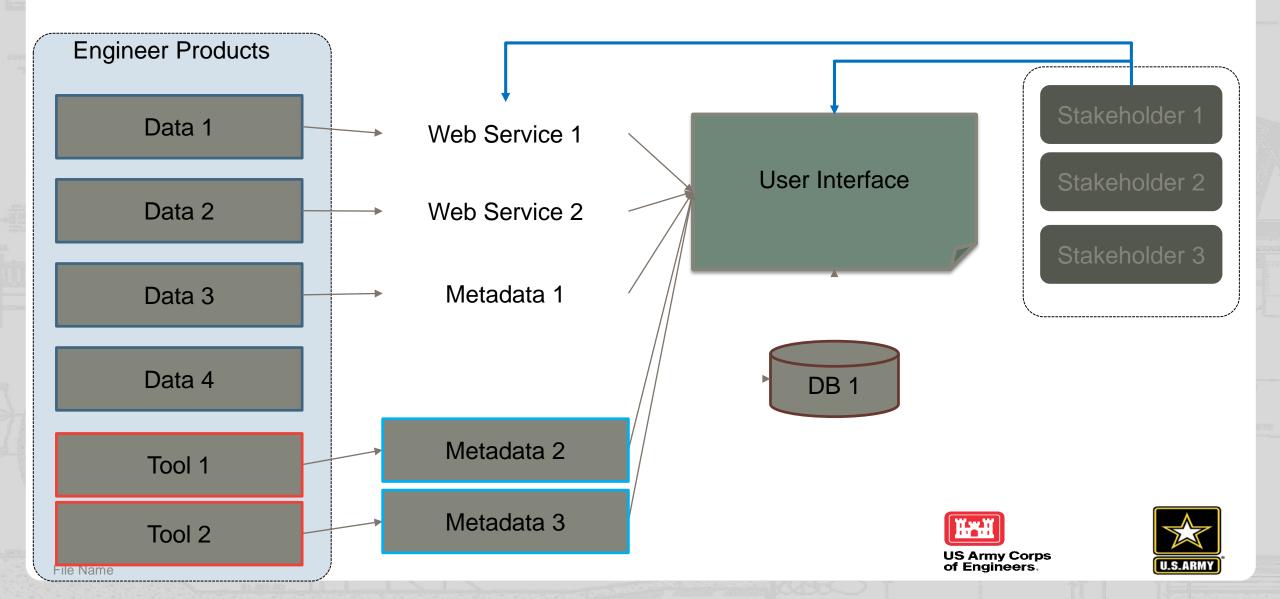
	Data	Data	
	FIREWALL	FIREWALL	
	Replication	Web Services	Web Services
	ACE-IT Database	ACE-IT Server	A
r			
<u>.</u>	WEBSITE	WEBSITE	W
	ACE-IT Server	ACE-IT Server	ACE-IT
			US Army Corps of Engineers

FIREWALL

Web

b Services

ACE-IT & ESRI Servers


WEBSITE

ACE-IT Server or Azure

File Name

USER INTERFACES AND DATA

WHAT ARE WEB SERVICES?

User Datasets Interfaces Web Services

WEB SERVICES = URL TO DATASET

	X
🗲 🕘 🙋 http://rsc-agisu.usace.army.mil/s1arcgis/rest/services/National_Admin/USACE_Char 🔎 🗸 🖉 National_Admin/USACE_Ch × 📗 Sediment & Ecosystem Manag	* 🔅
File Edit View Favorites Tools Help	
🚖 🥘 Suggested Sites 🔻 👢 ArcGIS_Servers 👻 👢 CSPI 👻 👢 FRF Demo 👻 📜 Metadata 👻 📜 Portals and Platforms 👻 👢 SAGA 👻 👢 SAGA Data Tips 👻 📜 Scrum Projects 💌 🔀 ActiveCollab	>>
ArcGIS REST Services Directory	<u>n</u>
Home > services > National Admin > USACE Channel Framework (FeatureServer) Help API Reference	e
JSON SOAP	
National_Admin/USACE_Channel_Framework (FeatureServer)	
View In: ArcGIS Online map viewer	
View Footprint In: ArcGIS Online map viewer	
Service Description: This service provides location information of channels currently being maintained by the United States Army Corps of Engineers. 59 high-tonnage projects are currently being prepared to 3-D specifications. Created by Lucas Culbertson	
Has Versioned Data: false	
MaxRecordCount: 10000	
Supported Query Formats: JSON, AMF	
Layers:	
 <u>Stationing</u> (0) <u>ChannelLine</u> (1) 	
Description:	
Copyright Text: USACE	
Spatial Reference: 4326 (4326)	
Initial Extent:	
XMin: -80.61335598154218 YMin: 28.407683193247408 XMax: -80.5837316920196 YMax: 28.424101474187637 Spatial Reference: 4326 (4326)	
Full Extent:	<u> </u>

The RSM Proce	ess × 🗅 Execute Task (Calculate P × 🗅 Regional Sediment Mana ×	Padk	-	٥	×
$\leftrightarrow \ \ominus \ \Box \ \Box$	Secure https://gis.sam.usace.army.mil/server/rest/services/SAGA/CalculatePercentFraction/GPServer/Calculate%20Percent%20Fraction/execute			☆	° :
ArcGIS REST	Services Directory		<u>Login</u>	Get To	<u>ken</u>
<u>Home</u> > <u>servi</u>	ices > SAGA > CalculatePercentFraction (GPServer) > Calculate Percent Fraction > execute	<u>Help</u>	API F	leferer	nce

Execute Task (Calculate Percent Fraction)

sieve_data: (GPString)	
subgroup: (<i>GPString</i>)	
Options:	
Output Spatial Reference:	
Process Spatial Reference:	
ReturnZ:	True International False
ReturnM:	True International False
Return True Curves:	True Image: False
Format:	HTML •
Execute Task (GET) Execute	Task (POST)

Input Data Results-Table 2 Results-Graph

+ Add Row 🥜 Calculate	Output Units: phi 🔻		
1 Sieve Size	Percent Passing	Sieve Units	0
76.2	100	mm 🔻	-
38.1	100	mm 🔻	-
19.05	100	mm 🔻	-
9.525	100	mm 💌	-
4.75	100	mm 🔻	-
2.36	100	mm 💌	-
2	100	mm 🔻	-
1.18	99.8	mm 🔻	-
.6	99.3	mm 🔻	-
.3	97.4	mm 💌	F
.15	88.9	mm 🔻	-
.075	86.6	mm 💌	-
.03	85	mm 🔻	-
.005	61	mm 💌	-
.0015	37	mm 🔻	-

Input Data	Results-Table	Results-Graph					
				Overall Classification			
	American Society	for Testing Materials	Gravel (>4750µ)	Coarse Sand (2000-4750µ)	Medium Sand (425-2000µ)	Fine Sand (75-425µ)	Silt (5-75µ)
			0.0%	0.0%	0.7%	12.7%	25.6%
	Unified Soi	I Classifcation	Gravel (≻4760µ)	Coarse Sand (2000-4760µ)	Medium Sand (425-2000µ)	Fine Sand (74-425µ)	Si
			0.0%	0.0%	0.7%	12.7%	8
	Wentworth	Classification	Gravel (>2000µ)	Coarse Sand (500-2000µ)	Medium Sand (250-500µ)	Fine Sand (62.5-250µ)	Silt (3.9-62.5µ)

	D	istribution Statistics, p	hi		
	D10	D35	D50	D90	Standard Deviation
Overall	N/A	N/A	0.003	0.164	N/A
<62.5µ	N/A	N/A	0.002	0.018	N/A
62.5-250µ	0.104	0.169	0.193	0.275	Grain Size Fu
>250µ	0.330	0.418	0.482	1.088	0.017

1.9%

10.8%

0.7%

Calculation Source:

The equations that calculate the median, St dev, skewness, & Kurtosis are from Part III, Chapter 1 of the CEM - eqs III-1-2 through III-1-5 on pg III-1-10. CE Galvin, 1996, Sediment Properties, Part III, Chapter 1 of Coastal Engineering Manual, US Army Corps of Engineers, EM 1110-2-1810, Washington DC.

0.0%

Input from Sieve Stack – Sieve Size, % Passing, Sieve Units 1

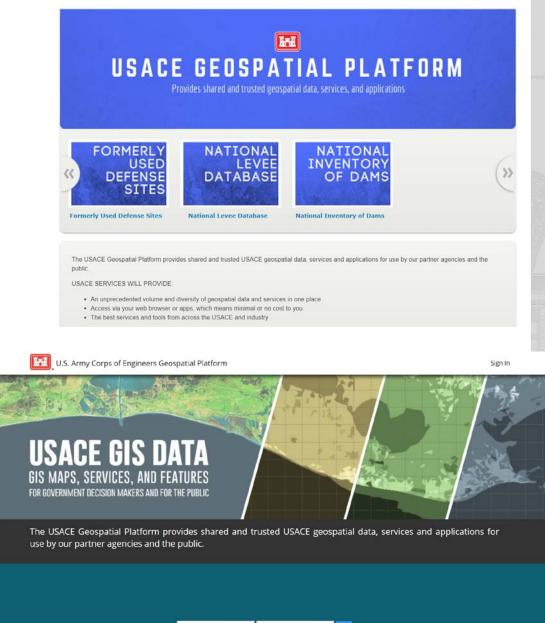
Clay (<₅µ) 61.0%

> Clay (<3.9µ)

61.0%

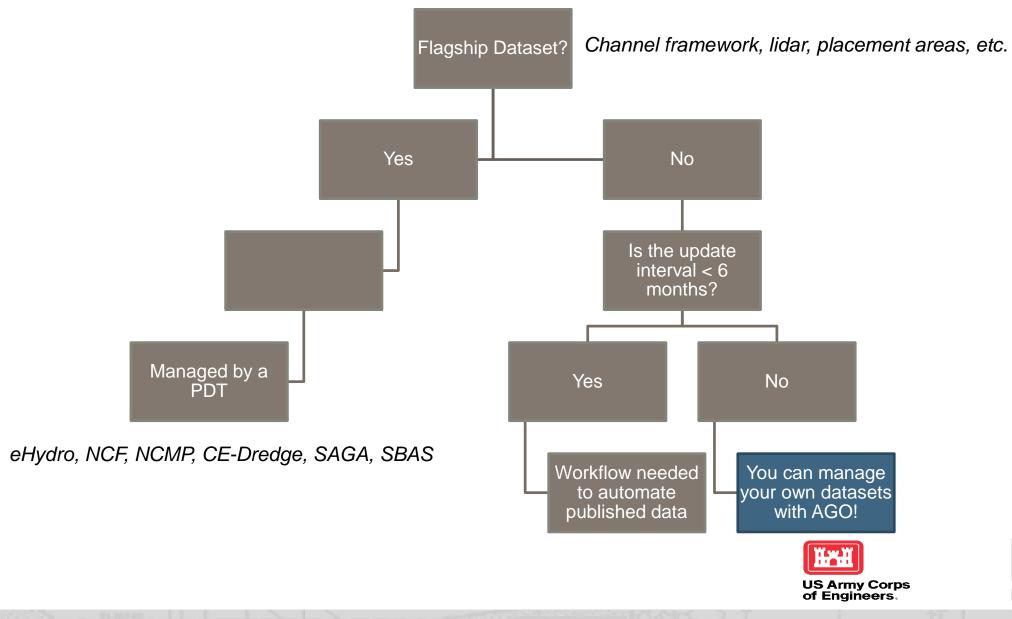
Silt-Clay (<74µ) 86.6%

25.6%


Output Table of **2** Computed Statistics

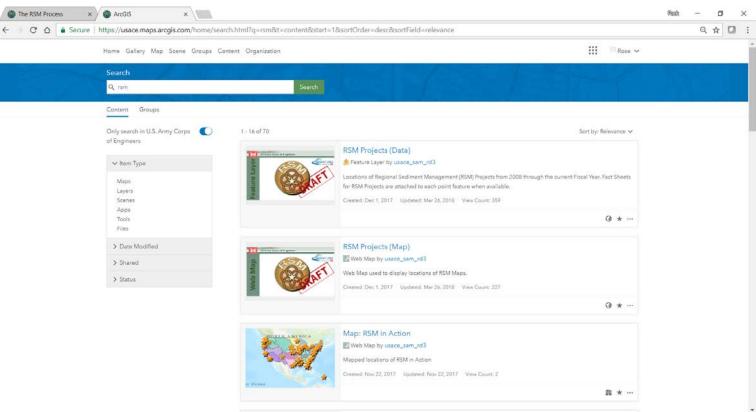
Grain Size Distribution Graph

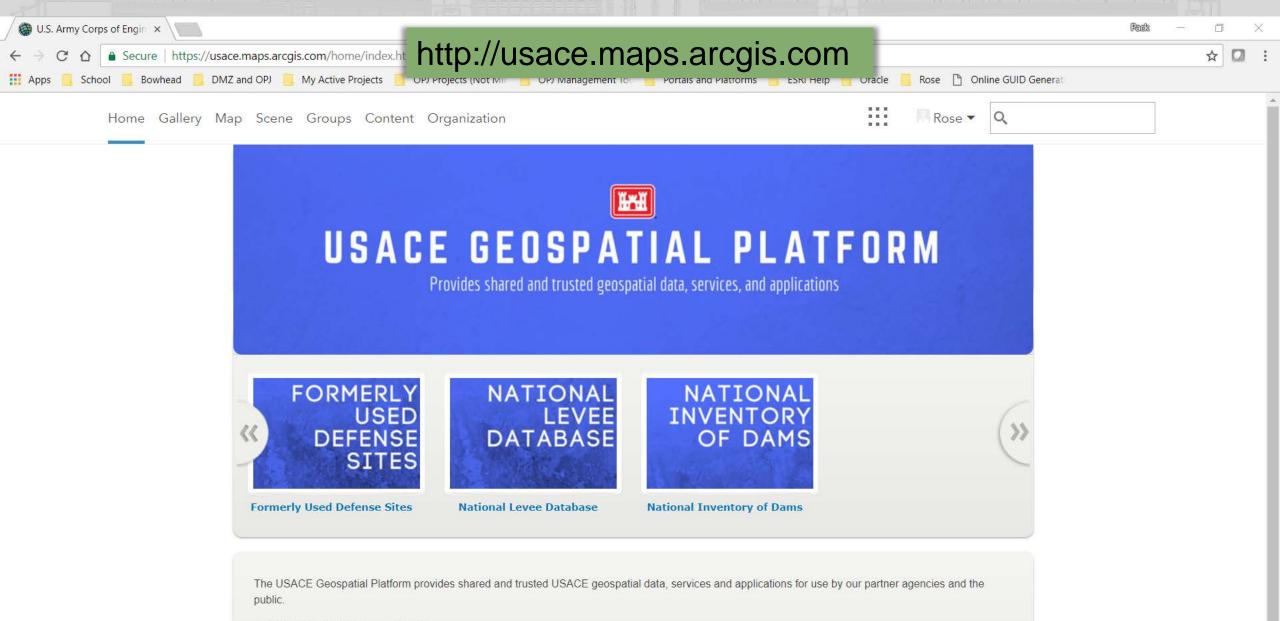
Algorithms used in computations from ERDC-CHL


DIF TOOLS

- Commercial Off-the-Shelf Software (COTS)
 - ESRI Portals are hosted on non-USACE, but approved, servers that store and distribute spatial and non-spatial data.
 - USACE Geoplatform
 - Content Map Based or Non-Spatial Data
 - Story Maps
 - Survey 123
 - Insights
 - USACE Geoplatform Open Data
 - Public access to discover datasets
 - Data.gov connection
- Custom Solutions
 - eHydro, Dredging Manager, SAGA, TLP, Decision Support Tools, SBAS, Dredging Technologies, CSPI, NCMP

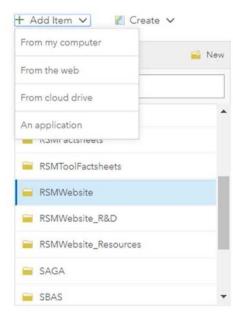
Search for Data ... or by location


HOSTING & DISTRIBUTION


U.S.ARMY

WHAT IS ARCGIS ONLINE (AGO)?

 ArcGIS Online is an online, collaborative web GIS that allows you to use, create, and share maps, scenes, apps, layers, analytics, and data. You get access to Living Atlas of the World, apps, and Esri's secure cloud, where you can add items and publish web layers.



USACE SERVICES WILL PROVIDE:

- · An unprecedented volume and diversity of geospatial data and services in one place
- · Access via your web browser or apps, which means minimal or no cost to you
- · The best services and tools from across the USACE and industry

C 🛆 Secure https://usace.maps.arcgis.	.com/home/content.html?start=1&view=table&sortOrder=desc&sortField=modified	1&searchTerm	=#groups		☆
me Gallery Map Scene Groups Co	ntent Organization			Rose V Q	
Content				 spatial and n 	
My Content My Favorites My Groups	My Organization Living Atlas			e map, build we cations	eb
/ly Groups	Q Search Regional Sediment Management (RSM)		арри		= = =
Open Data Collaboration	1 - 16 of 40			white takes of the second	Date Modified 🗸
Regional Sediment	Title		Modified	 Owner 	View Count
Management (RSM)	CE-Dredge: Decision Support Tool, Galveston District (All Data)	0 * ·	••• Mar 28, 2018	usace_sam_rd3	15
RSM: Beach and Nearshore	CE-Dredge: Environmental Data for DST (Map Source)	0 × ·	••• Apr 11, 2018	usace_sam_rd3	65
Placement	CE-Dredge: National Data for the DST	G * ·	••• Mar 28, 2018	usace_sam_rd3	41
RSM: Comprehensive Regional Surveys and	CE-Dredge: National Data for the DST	0 1	Mar 28, 2018Apr 2, 2018	usace_sam_rd3 usace_sam_rd3	41 65
RSM: Comprehensive Regional Surveys and Environmental Mapping		@ * ·			
RSM: Comprehensive Regional Surveys and Environmental Mapping	CE-Dredge: Planning Data for DST	@ * ·	••• Apr 2, 2018	usace_sam_rd3	65
RSM: Comprehensive Regional Surveys and Environmental Mapping	 CE-Dredge: Planning Data for DST Published Budgets (Source Map) 	0 * · 0 * ·	Apr 2, 2018Apr 2, 2018	usace_sam_rd3 usace_sam_rd3	65 60
RSM: Comprehensive Regional Surveys and	 CE-Dredge: Planning Data for DST Published Budgets (Source Map) Reviewed TLP Case Studies (View Only) 	0 * · 0 * · 0 * ·	 Apr 2, 2018 Apr 2, 2018 Apr 2, 2018 	usace_sam_rd3 usace_sam_rd3 usace_sam_rd3	65 60 10

ADDING & CREATING DATA ON AGO

Maps		
Layers		
Scenes		
Apps		
Tools		
Files		

Folders	Feature Layer
	Tile Layer
Q Filter folders	Мар
RSM_DST	
RSMFactsheets	Scene
RSMToolFactshee	Locator (view)
RSMWebsite	Арр
RSMWebsite_R&D	Using a Template
RSMWebsite_Res	Using the Web AppBuilder
SAGA	Using Operations Dashboard
SBAS	-

✓ Item Type	
Maps	
Layers	
Scenes	
Apps	
Tools	
Files	
> Date Modified	
> Date Created	

16

File Name

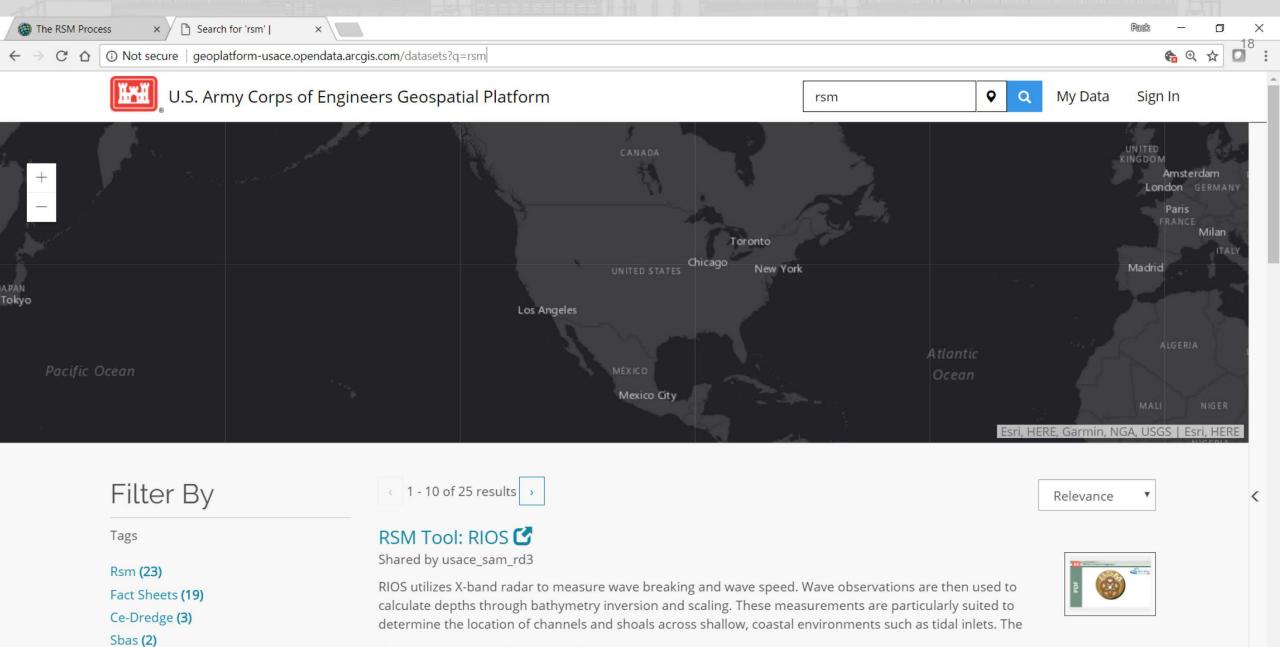
s 🗙 🖹 Geoplatform

← → C ☆ ③ Not secure geoplatform-usace.opendata.arcgis.com

http://geoplatform-usace.opendata.arcgis.com

🍖 🔍 ★

U.S. Army Corps of Engineers Geospatial Platform


Sign In

USACE GIS DATA GIS MAPS, SERVICES, AND FEATURES FOR GOVERNMENT DECISION MAKERS AND FOR THE PUBLIC

The USACE Geospatial Platform provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.

Waiting for File N29.9 Rgis.com...

1 62

No license specified 🗯 4/5/2018 🔓 Document

Sbas-A (2)

More ¥

The RSM Process

☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740

×

Discover Regional Sediment Management

Ay 2

The RSM Process

This info-graphic shows the process we have taken over the last 10 years to implement Regional Sediment Management (RSM). The communication and coordination with the community is part of the entire process.

This process can be divided into 2-phases.

Phase 1 is working to develop a better understanding of the region – identifying sediment sources, sinks, and transport. Basically conducting studies, filling gaps, and developing plans.

Phase 2 is taking action and implementing adaptive management strategies to move sediment – getting sand on the beach

In looking back over the last 10-yrs, we find that we have spent considerable time and resources on phase 1. But we have not had the level of success we had

4. TAKE ACTION

-Construct, monitor & adaptively manage -Capture benefits & lessons learned -Incorporate into standard practice

1. UNDERSTAND REGION

-Sediment sources, project needs, processes, gaps, engineering actions, ecological considerations -Resources, challenges & requirements

3. REGIONAL RSM STRATEGY -Integrate projects into Regional Strategy -ID authorities, funding, permit requirements, leveraging opportunities -Prioritize: need, benefits, timelines

2. EVALUATE RSM STRATEGIES (PROJECT SCALE)

-Efficient & effective use of sediments -Project-level analysis (tools, models, technologies) -RSM pilot projects

Communication, Collaboration, Innovation, Decision Making Interagency, Stakeholders, Partners, Resource Agencies

A

The RSM Process

☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740

×

Discover Regional Sediment Management

A y 2

The RSM Process

1. Understand the Region

Phase 1: Understand the Region

In order to successfully implement RSM, it is necessary to develop an understanding of the sediment sources and needs, sediment processes, morphologic evolution, ecological conditions, endangered species, pertinent engineering activities, gaps in knowledge, sediment related challenges, and stakeholder and partner goals within a region.

View All Tools & Fact Sheets applicable to this Phase

Concepts, Tools, and Technologies at the Regional Scale Key tools and technologies to understand the region include regional sediment budgets as well as application of regional hydrodynamic, hydrologic, sediment transport, and ecological numerical models. Data that may be required to support these tools and technologies include bathymetric and topographic surveys, aerial and hyperspectral imagery, hydrodynamic and hydrologic data, sediment characteristics, ecological data, as well as data about engineering activities such as dredging histories and flood risk management, shore protection, and ecosystem restoration projects. Utilizing Geographic Information System (GIS) capabilities, enterprise databases, and web-based visualization tools greatly enhances the ability to understand and share information on

3. REGIONAL RSM STRATEGY

-Construct, monitor & adaptively manage -Capture benefits & lessons learned

-Incorporate into standard practice

4. TAKE ACTION

 Integrate projects into Regional Strategy
 ID authorities, funding, permit requirements, leveraging opportunities
 Prioritize: need, benefits, timelines 1. UNDERSTAND REGION -Sediment sources, project needs, processes, gaps, engineering actions, ecological considerations -Resources, challenges & requirements

2. EVALUATE RSM STRATEGIES (PROJECT SCALE)

-Efficient & effective use of sediments -Project-level analysis (tools, models, technologies) -RSM pilot projects

Communication, Collaboration, Innovation, Decision Making Interagency, Stakeholders, Partners, Resource Agencies

19603 —

A

The RSM Process

☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

Ay 2

×

Discover Regional Sediment Management

The RSM Process

1. Understand the Region

Phase 1: Understand the Region

In order to successfully implement RSM, it is necessary to develop an understanding of the sediment sources and needs, sediment processes, morphologic evolution, ecological conditions, endangered species, pertinent engineering activities, gaps in knowledge, sediment related challenges, and stakeholder and partner goals within a region.

• View All Tools & Fact Sheets applicable to this Phase

Concepts, Tools, and Technologies at the Regional Scale Key tools and technologies to understand the region include regional sediment budgets as well as application of regional hydrodynamic, hydrologic, sediment transport, and ecological numerical models. Data that may be required to support these tools and technologies include bathymetric and topographic surveys, aerial and hyperspectral imagery, hydrodynamic and hydrologic data, sediment characteristics, ecological data, as well as data about engineering activities such as dredging histories and flood risk management, shore protection, and ecosystem restoration projects. Utilizing Geographic Information System (GIS) capabilities, enterprise databases, and web-based visualization tools greatly enhances the ability to understand and share information on

SACK ArcGIS Features Plans Map Scene Help 🛔 Sign In Q RSM: Phase 1 - Understand the Region Members Overview Content **Refine Content** Q Search group content ✓ Item Type 1 - 13 of 13 Sort by: Title ∨ Maps Spanal Data Opatiol Data Scaller Data Layers 04 Scenes Apps Tools Published Budgets (... RSM Tool: GSSHA Fa... RSM Tool: Integrate... Files by usace_sam_rd3 by usace_sam_rd3 by usace_sam_rd3 > Date Modified Updated: Apr 2, 2018 Updated: Mar 27, 2018 Updated: Mar 27, 2018 View Count: 60 View Count: 0 View Count: 0 G ... ··· () G ... US Arriv Cere Seated Data Spatial Data RSM Tool: NCMP Fa... **RSM Tool: RIOS** RSM Tool: SBAS Fact...

PHASE 1 TOOLS

Meep Wab	ia 🥨	ia 🚱	POF
Published Budgets (by usace_sam_rd3 Updated: Apr 2, 2018 View Count: 60	RSM Tool: GSSHA Fa by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0	RSM Tool: Integrate by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0	RSM Tool: NCMP Fa by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0
Q	@ ···	G	Q ···
RSM Tool: RIOS by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0	RSM Tool: SBAS Fact by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 2	RSM Tool: STWAVE by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0	RSM Tool: WIS Fact by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 0
Q	··· •	@	··· •
SBAS for ArcMap by usace_sam_rd3 Updated: Mar 27, 2018 View Count: 11	SBAS: Sediment Bu by usace_sam_rd3 Updated: Apr 6, 2018 View Count: 2	Submit TLP Case Stu by usace_sam_rd3 Updated: Apr 6, 2018 View Count: 0	Submit TLP Case Stu by usace_sam_rd3 Updated: Mar 28, 2018 View Count: 5

22

A

0

.

.

.

.

The RSM Process

△ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

Ay 2

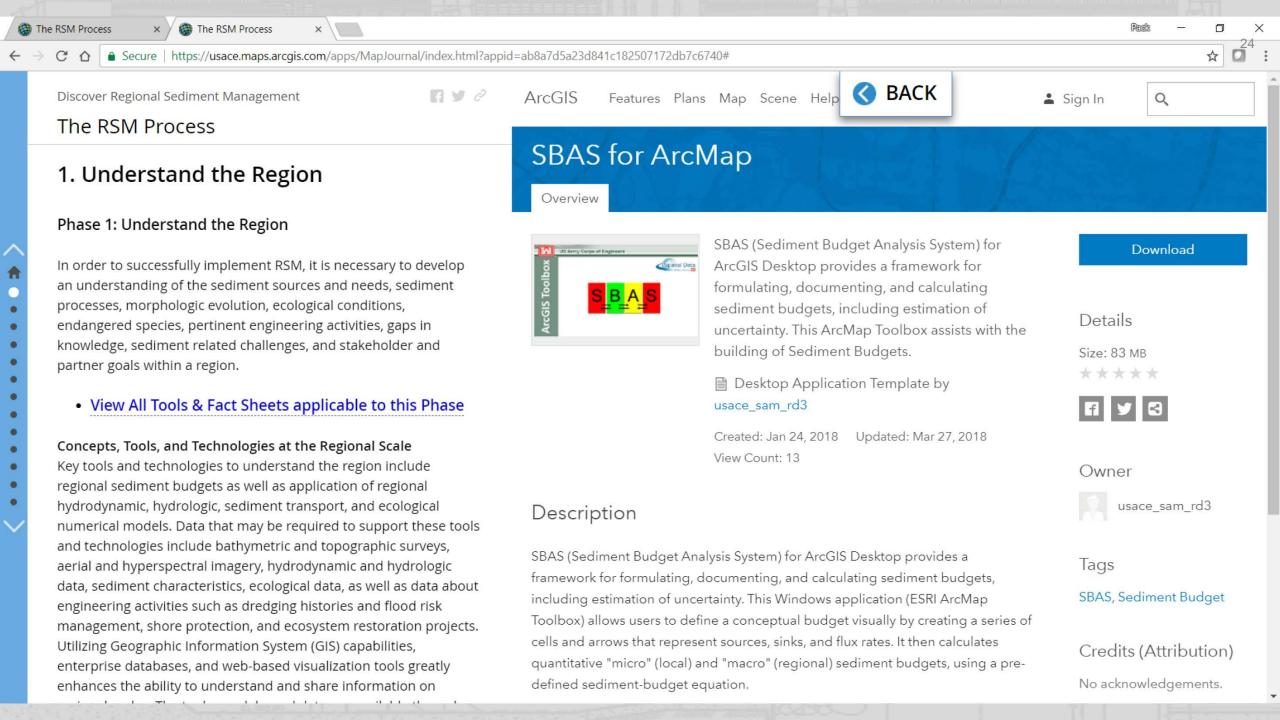
×

Discover Regional Sediment Management

1. Understand the Region

Phase 1: Understand the Region

In order to successfully implement RSM, it is necessary to develop an understanding of the sediment sources and needs, sediment processes, morphologic evolution, ecological conditions, endangered species, pertinent engineering activities, gaps in knowledge, sediment related challenges, and stakeholder and partner goals within a region.


• View All Tools & Fact Sheets applicable to this Phase

Concepts, Tools, and Technologies at the Regional Scale Key tools and technologies to understand the region include regional sediment budgets as well as application of regional hydrodynamic, hydrologic, sediment transport, and ecological numerical models. Data that may be required to support these tools and technologies include bathymetric and topographic surveys, aerial and hyperspectral imagery, hydrodynamic and hydrologic data, sediment characteristics, ecological data, as well as data about engineering activities such as dredging histories and flood risk management, shore protection, and ecosystem restoration projects. Utilizing Geographic Information System (GIS) capabilities, enterprise databases, and web-based visualization tools greatly enhances the ability to understand and share information on

BACK ArcGIS Features Plans Map Scene Help 🛔 Sign In Q RSM: Phase 1 - Understand the Region Members Overview Content **Refine Content** Q Search group content ✓ Item Type Clear 1-2 of 2 Filters: Type: Apps X Sort by: Title ∨ Clear All Maps Copatial Data Story Map Layers ArcGIS Tooll Scenes Apps Web Apps The RSM Process SBAS for ArcMap Mobile Apps by usace_sam_rd3 by usace_sam_rd3 Desktop Apps Updated: Mar 27, 2018 Updated: Mar 28, 2018 Registered View Count: 11 View Count: 343 Apps Only **3** ... **③** … Tools Files > Date Modified

23

☆

The RSM Process С

A

•

•

•

•

•

•

•

.

The RSM Process

X

Discover Regional Sediment Management

The RSM Process

1a. Regional Sediment Budgets

Regional Sediment Budgets

Regional sediment budgets are an analysis of sediment sources, sinks, and fluxes within a specified region over a given timeframe that provide a conceptual and qualitative understanding of the sediment patterns and pathways over a region. Developing a sediment budget requires an understanding of the sediment sources, sinks, longshore and cross-shore sediment transport rates, areas of erosion and accretion, morphologic changes, and engineering actions over the region. Sediment budgets can be formulated for a range of conditions and at watershed, regional, and project level scales, to provide insights into potential near- and longterm morphologic response to engineering activities and assist with connecting sediment sources to sediment needs.

• View Published Regional Sediment Budgets in a Map!

View Sediment Budgets Tools and Fact Sheets

1b. Comprehensive Regional Surveys and Environmental Mapping

Comprehensive Regional Surveys and Environmental Mapping

Sediment Budget Analysis Systen Q Find address or place Select a Group to Filter Toronto Budgets, by Alternative Mississauga Guelph Local Budgets (cells and fluxes), by Alternative Kitchener Oakville EQUALS Hamilton • McKenster Niagara London NIAGARA PENINSU St. Thomas Long Point Bay Lake Erie Lac Érié Lake Erie Esri, © OpenStreetMap contributors, H. App State Click to restore the map extent and layers Reset Appl visibility where you left off.

Add Criteria

A

.

.

.

.

.

.

.

The RSM Process

△ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

Ay 2

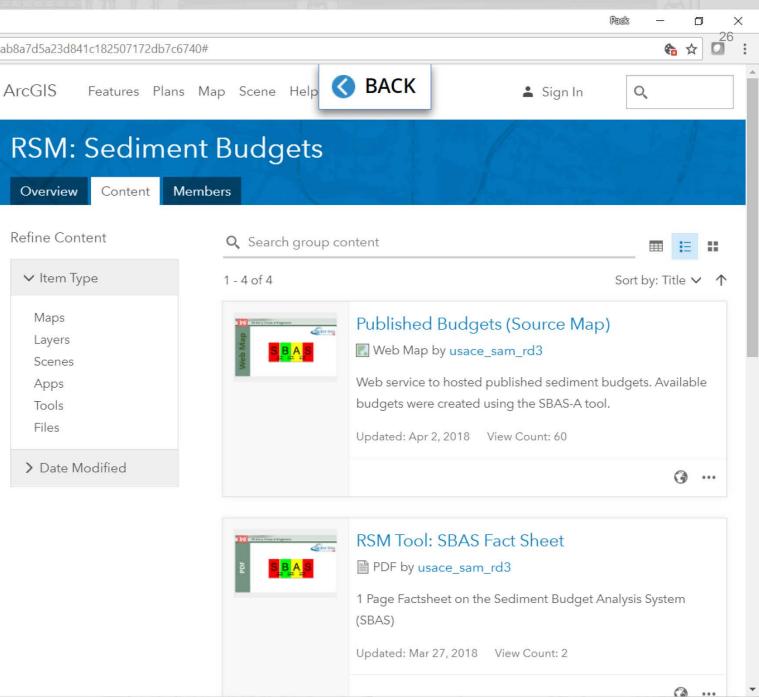
×

Discover Regional Sediment Management

The RSM Process

1a. Regional Sediment Budgets

Regional Sediment Budgets


Regional sediment budgets are an analysis of sediment sources, sinks, and fluxes within a specified region over a given timeframe that provide a conceptual and qualitative understanding of the sediment patterns and pathways over a region. Developing a sediment budget requires an understanding of the sediment sources, sinks, longshore and cross-shore sediment transport rates, areas of erosion and accretion, morphologic changes, and engineering actions over the region. Sediment budgets can be formulated for a range of conditions and at watershed, regional, and project level scales, to provide insights into potential near- and longterm morphologic response to engineering activities and assist with connecting sediment sources to sediment needs.

• View Published Regional Sediment Budgets in a Map!

• View Sediment Budgets Tools and Fact Sheets

1b. Comprehensive Regional Surveys and Environmental Mapping

Comprehensive Regional Surveys and Environmental Mapping

The RSM Process

C ☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

×

Discover Regional Sediment Management

Ay 2

The RSM Process

2. Identify & Evaluate RSM Strategies

Once the regional system is understood, RSM strategies to improve the use of sediments are identified and evaluated at the project scale. It is important to continue communicating and coordinating with stakeholders and partners to identify potential strategies, define metrics for success, and to make decisions throughout the evaluation process. This section provides an overview of examples of common RSM strategies, and tools that are available to evaluate strategies that address specific needs and challenges.

View All Tools & Fact Sheets applicable to this Phase

Applying RSM Goals to Projects

When considering RSM strategies, the overall goals are to keep sediment in the littoral system, reduce unwanted sedimentation that must be managed later, mimic natural sediment processes when appropriate, enhance the environment, and maintain and protect infrastructure. Because there are numerous types of RSM strategies that can be used, the common strategies are outlined below. Where appropriate, tools that aid in identifying and evaluating the specific RSM strategy are identified.

4. TAKE ACTION -Construct, monitor & adaptively manage -Capture benefits & lessons learned 1. UNDERSTAND REGION -Incorporate into standard practice -Sediment sources, project needs, processes, gaps, engineering actions, ecological considerations Resources, challenges & requirements 3. REGIONAL RSM STRATEGY -Integrate projects into Regional Stra egy -ID authorities, funding, permit requirements leveraging opportunities 2. EVALUATE RSM STRATEGIES -Prioritize: need, benefits, timelines (PROJECT SCALE) -Efficient & effective use of sediments -Project-level analysis (tools, models, technologies) -RSM pilot projects Communication, Collaboration, Innovation, Decision Making Interagency, Stakeholders, Partners, Resource Agencies

FileNakeep Sediments within the Littoral

A

.

.

.

.

.

.

.

.

The RSM Process

Secure | https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

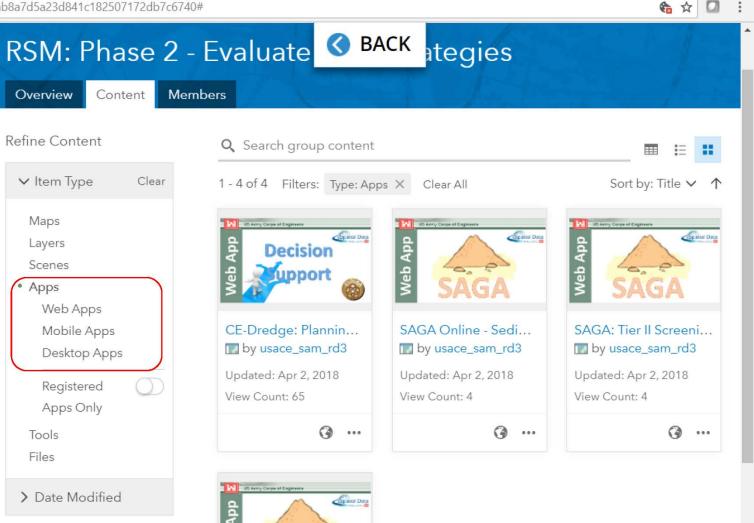
Ry 2

×

Discover Regional Sediment Management

The RSM Process

2. Identify & Evaluate RSM Strategies


Once the regional system is understood, RSM strategies to improve the use of sediments are identified and evaluated at the project scale. It is important to continue communicating and coordinating with stakeholders and partners to identify potential strategies, define metrics for success, and to make decisions throughout the evaluation process. This section provides an overview of examples of common RSM strategies, and tools that are available to evaluate strategies that address specific needs and challenges.

View All Tools & Fact Sheets applicable to this Phase

Applying RSM Goals to Projects

When considering RSM strategies, the overall goals are to keep sediment in the littoral system, reduce unwanted sedimentation that must be managed later, mimic natural sediment processes when appropriate, enhance the environment, and maintain and protect infrastructure. Because there are numerous types of RSM strategies that can be used, the common strategies are outlined below. Where appropriate, tools that aid in identifying and evaluating the specific RSM strategy are identified.

FileNakeep Sediments within the Littoral

Tier II Screening Eval... by usace_sam_rd3

Updated: Apr 2, 2018

PHASE 2 TOOLS

CE-Dredge: Decision Support Tool, Galveston District (All Data)	0	 Mar 28, 2018	usace_sam_rd3	15	
CE-Dredge: Environmental Data for DST (Map Source)	0	 Apr 11, 2018	usace_sam_rd3	65	
CE-Dredge: National Data for the DST	0	 Mar 28, 2018	usace_sam_rd3	41	
CE-Dredge: Planning Data for DST	0	 Apr 2, 2018	usace_sam_rd3	65	_
RSM Tool: AISAP Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: CE-Dredge Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	-
RSM Tool: CMS Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: CMS Flow Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: CMS Wave Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: CPT Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: CSAT Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: Depth of Closure Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: DST Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: Ecological Data Synthesis Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: eHydro Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0	
RSM Tool: PTM Fact Sheet File Name	0	 Mar 27, 2018	usace_sam_rd3	0	

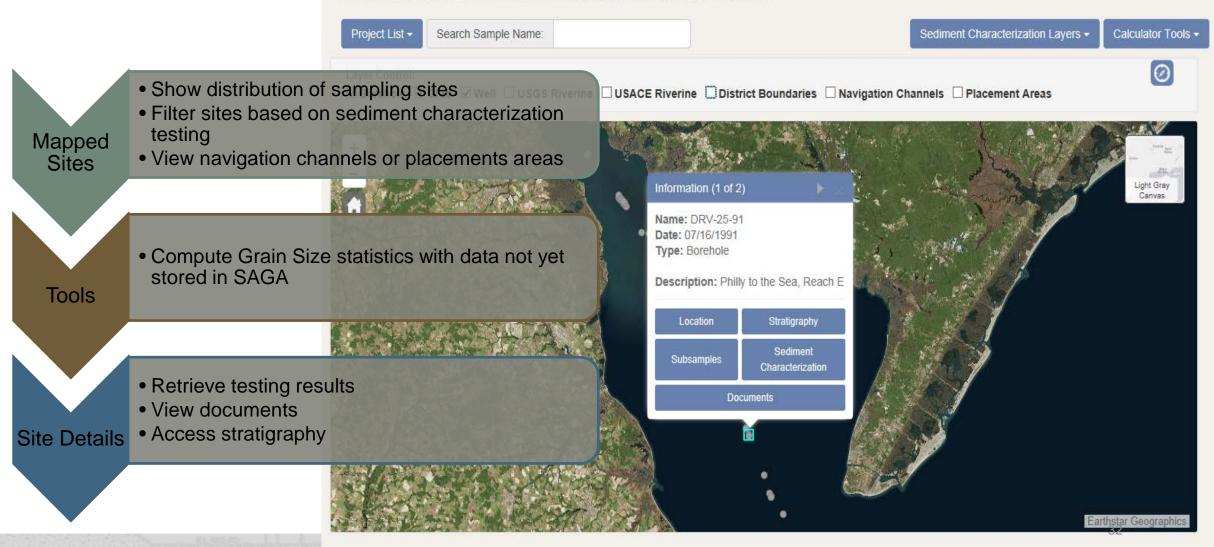
4	RSM Tool: SAGA Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0
	RSM Tool: SMT Fact Sheet	0	 Mar 27, 2018	usace_sam_rd3	0
	SAGA Online - Sediment Analysis & Geo- Application	0	 Apr 2, 2018	usace_sam_rd3	4
	SAGA: Calculate Percent Fraction	0	 Apr 2, 2018	usace_sam_rd3	0
	SAGA: Calculate Percentile	0	 Apr 2, 2018	usace_sam_rd3	0
	SAGA: Calculate Standard Deviation (Grain Size)	0	 Apr 2, 2018	usace_sam_rd3	0
	SAGA: Calculate Volumetric Fraction	0	 Apr 2, 2018	usace_sam_rd3	0
	SAGA: Database Content	0	 Apr 2, 2018	usace_sam_rd3	0
0	SAGA: Sampling Sites	0	 Apr 2, 2018	usace_sam_rd3	9
	SAGA: Tier II Screening Evaluations for Open Water Disposal of Dredged Material	0	 Apr 2, 2018	usace_sam_rd3	4
	Tier II Screening Evaluations for Open Water Disposal of Dredged Material	0	 Apr 2, 2018	usace_sam_rd3	5

SAGA DATABASE

- Analysis of physical data is not a standardized process. It is also often timeconsuming due to the lack of a consistent archive method and data storage format. As a result, most analyses are completed with dated techniques that cannot fully realize the potential of the digital dataset.
- In SAGA, the database is designed so intelligent filters can be applied and maps symbolized.

PUBLIC WEBSITE

http://navigation.usace.army.mil/SEM/Analysis


US Army Corps of Engineers

Sediment Analysis (SAGA)

SAGA ONLINE

To view sediment data, from the Project List drop-down select a project or in the Search Sample Name text box type a sample name. The map zooms to the appropriate location, displaying sediment sampling events for all items selected in the Sediment Characterization Layers drop-down and the Layer Control section. To display the ID of an event, hover over its icon; to display a popup with additional data about the event, click the icon. Many popups also include links to additional data and/or reports. Sediment data is provided by the Sediment Analysis & Geo-App (SAGA) database, which is populated by USACE Districts through Excel data templates available on the USACE Geospatial Platform. To analyze a sediment sample not available in SAGA, select a tool from the Calculator Tools drop-down.

The RSM Process

C ☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

X

🛐 🕑 🧷 🛱 Edit ×

3. Regional RSM Strategy

Once RSM strategies are evaluated at the project level, the next phase in the RSM process is to develop a regional RSM strategy that integrates the projects across the region and identifies economic value, avenues for construction (authorities, funding, etc.), timelines, necessary coordination, and prioritization. Tools designed to aid in the decision-making phase of USACE projects integrate information on how the system is behaving and synthesize measurements and metrics into indicators of system operation. Peak system operation is best achieved through optimizing available resources. For USACE projects, these resources often fall into three categories: sediment or natural resources, authorities and financial resources, and equipment. Examples of these optimization tools and resources are included in the following sections.

View all Tools and Fact Sheets in this Phase

RSM Economic Value and Dredge Fleet Scheduling Optimization

The RSM Economic Value and Dredge Fleet Scheduling Optimization Tool documents the economic value through 1) linking projects and regionally managing sediments across navigation and shore protection projects, and 2) optimizing scheduling of the dredge fleet across the region through the Dredge Fleet Scheduling Optimization Tool. The web tool serves as a knowledge management portal regarding potential efficiencies available across navigation and shore protection projects. The tool documents potential value and allows Districts and decision makers to maximize return on investment of appropriated dollars. The RSM Economic Value and Dredge Fleet Scheduling Optimization Tool was developed and applied as a pilot within the USACE South Atlantic Division. For more information on this capability, view RSM Economic Value and Dredge Fleet Scheduling Optimization Pilot Fact Sheet.

Dredge Fleet Scheduling Optimization

The Dredge Fleet Scheduling component identifies additional efficiencies that can be gained by evaluating the dredge plants assigned to navigation projects and the planned schedule over the course of the dredging season. The optimization model considers localized constraints such as minimum dredging requirements, scheduling due to environmental windows, and suitability of particular dredge plants for specific navigation and/or beach nourishment projects. The result is an optimized dredge utilization schedule synchronized with navigation projects identified for a dredging season. More information on the Dredge Optimization Tool can be located on the Dredge Optimization Tool Fact Sheet. File Name

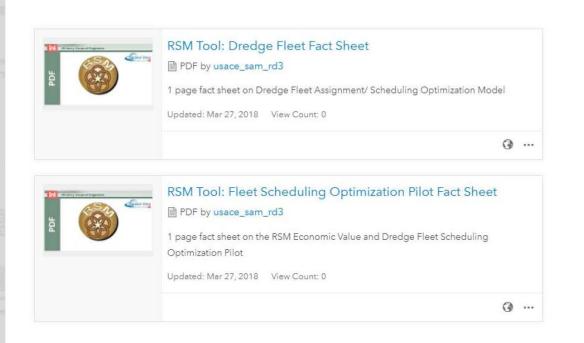
4. TAKE ACTION

-Construct, monitor & adaptively manage -Capture benefits & lessons learned -Incorporate into standard practice

1. UNDERSTAND REGION

-Sediment sources, project needs, processes, gaps, engineering actions, ecological considerations -Resources, challenges & requirements

3. REGIONAL RSM STRATEGY


 -Integrate projects into Regional Strategy
 -ID authorities, funding, permit requirements, leveraging opportunities
 -Prioritize: need, benefits, timelines

2. EVALUATE RSM STRATEGIES (PROJECT SCALE)

-Efficient & effective use of sediments -Project-level analysis (tools, models, technologies) -RSM pilot projects

Communication, Collaboration, Innovation, Decision Making Interagency, Stakeholders, Partners, Resource Agencies

PHASE 3 TOOLS

The RSM Process

C ☆ Secure https://usace.maps.arcgis.com/apps/MapJournal/index.html?appid=ab8a7d5a23d841c182507172db7c6740#

×

Discover Regional Sediment Management

🛐 🕑 🥜 🌣 Edit 🗙

The RSM Process

No issues detected

the region through the Dredge Fleet Scheduling Optimization Tool. The web tool serves as a knowledge management portal regarding potential efficiencies available across navigation and shore protection projects. The tool documents potential value and allows Districts and decision makers to maximize return on Investment of appropriated dollars. The RSM Economic Value and Dredge Fleet Scheduling Optimization Tool was developed and applied as a pilot within the USACE South Atlantic Division. For more information on this capability, view RSM Economic Value and Dredge Fleet Scheduling Optimization Pilot Fact Sheet.

Dredge Fleet Scheduling Optimization

The Dredge Fleet Scheduling component identifies additional efficiencies that can be gained by evaluating the dredge plants assigned to navigation projects and the planned schedule over the course of the dredging season. The optimization model considers localized constraints such as minimum dredging requirements, scheduling due to environmental windows, and suitability of particular dredge plants for specific navigation and/or beach nourishment projects. The result is an optimized dredge utilization schedule synchronized with navigation projects identified for a dredging season. More information on the Dredge Optimization Tool can be located on the Dredge Optimization Tool Fact Sheet.

4. Take Action

Once Phases 1, 2, and 3 of the RSM process are completed: 1) the regional sediment system is understood, 2) the RSM strategies are identified and evaluated at the project scale, and 3) a regional strategy has been developed, the next phase in the process is to take action and construct. Once the project is constructed it is important to monitor and adaptively manage to ensure the project is performing as expected, and to improve as needed to achieve expected performance. The value and/or benefits gained through the improved use of sediments are quantified to document and outreach successes. Projects are also monitored to validate tools and technologies that were applied. It is important to document and share lessons learned in order to assist others working to implement similar strategies. Continued collaboration and communication with stakeholders, resource agencies, and partners is necessary to incorporate the

RSM strategies into standard practice. The tools, technologies, and programs summarized in previous sections apply to this section.

4. TAKE ACTION

-Construct, monitor & adaptively manage -Capture benefits & lessons learned -Incorporate into standard practice

I. UNDERSTAND REGION

Sediment sources, project needs, processes, gaps, engineering actions, ecological considerations Resources, challenges & requirements

3. REGIONAL RSM STRATEGY -Integrate projects into Regional Strategy -ID authorities, funding, permit requirements

-Prioritize: need, benefits, timelines

2. EVALUATE RSM STRATEGIES (PROJECT SCALE)

-Efficient & effective use of sediments -Project-level analysis (tools, models, technologies) -RSM pilot projects

Communication, Collaboration, Innovation, Decision Making Interagency, Stakeholders, Partners, Resource Agencies

ADDITIONAL RESOURCES

- National Placement Data Manager
- eHydro
- Dredging Technologies
- Thin Layer Placement
- Coastal Systems Portfolio Initiative (CSPI)
- Dredging Manager

NPDM & Dredging Manager

4

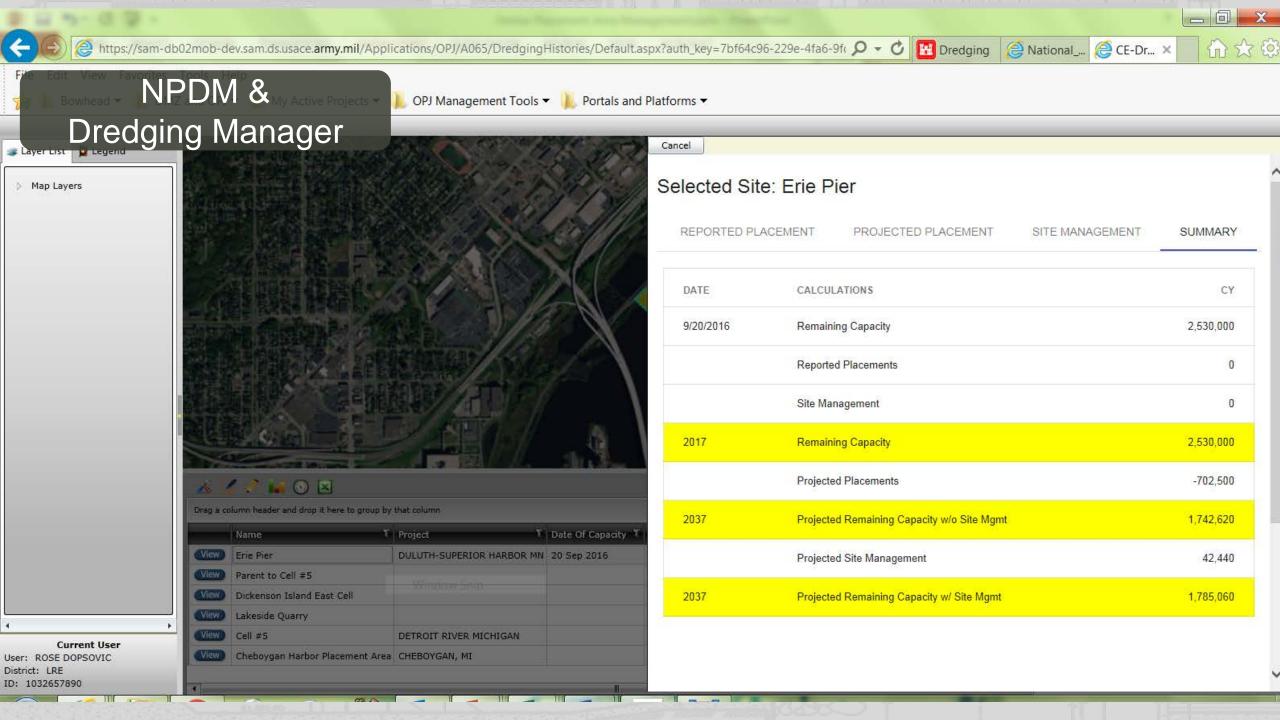
User Distr

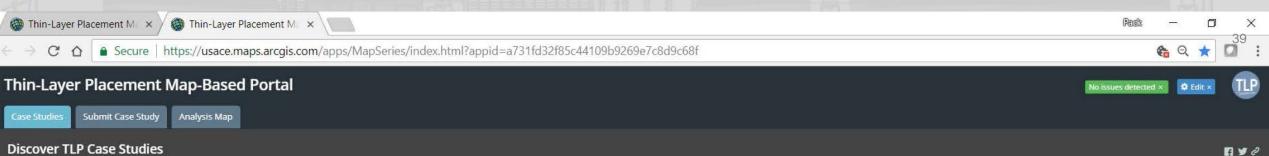
ID: 1032657890

Planning Tool

ake Cell

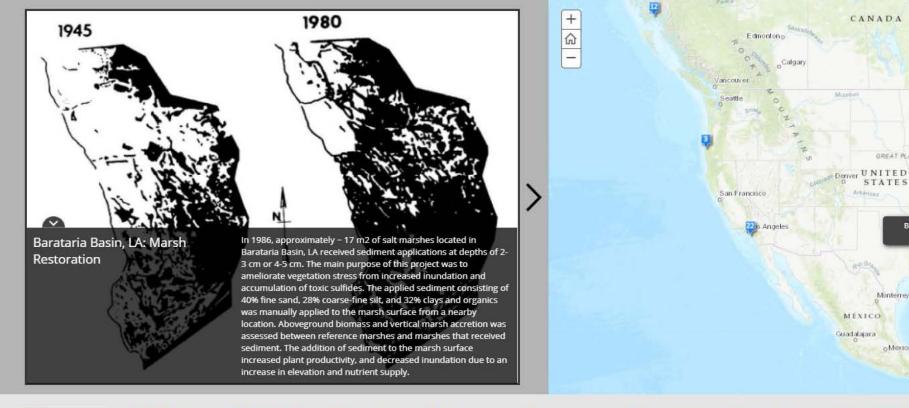
-


ŵ


ema

40

00


侵

Discover TLP Case Studies

Browse pictures or click on the map to view a summary of each project.

Restoration

Northern Mississippi River Delta, LA: Marsh Restoration

Paul J. Rainey Wildlife

10	100	- AL	9
-		147.	8
1X -	17	1 and	1
Bu	A.		
00	Sec. 1		

Guatemala

Lake Signerior

Chicago

St Louis

Barataria Basin, LA: Marsh

Restoration

GREAT PLAINS

Monterrey

Mexico City

Laks

Detroit

Toront

Mami

CUEA

Havana

Prince Santo Domingo

Atla

Barataria Basin, LA: Marsh Restoration

South Slough National Estuarine Research Reserve,

Hay Farm, NJ: Habitat

John H. Chafee National Wildlife Refuge, RI: Habitat Prime Hook National Wildlife

Refuge, DE: Habitat

Sanctuary, LA: Marsh

Sachuest Point National Wildlife Refuge, RI: Habitat

Sachuest Point National Wildlife Refuge, RI: Habitat Freeman Creek, NC: Marsh Restoration

Ottawa Montreal

ashington

Port-au-

hiladelphia

Remediation/Thin Layer

40

☆

C 🛆 🛈 navigation.usace.army.mil/CSPI/Default.aspx

Coastal Systems Portfolio Initiative Project Database

US Army Corps of Engineers

DOCUMENTS ONLINE MAP CONTACT US HOME

Find CSPI Projects:

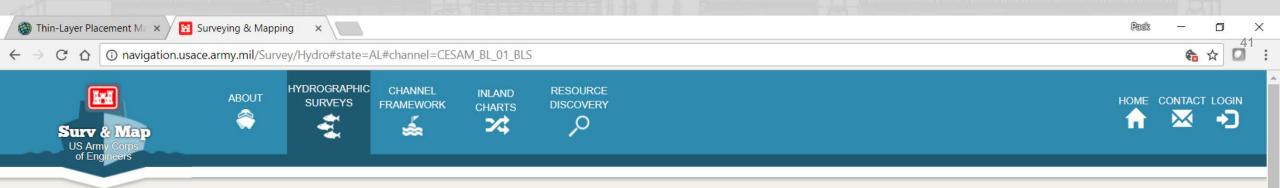
by State

■ by USACE Coastal District

Welcome

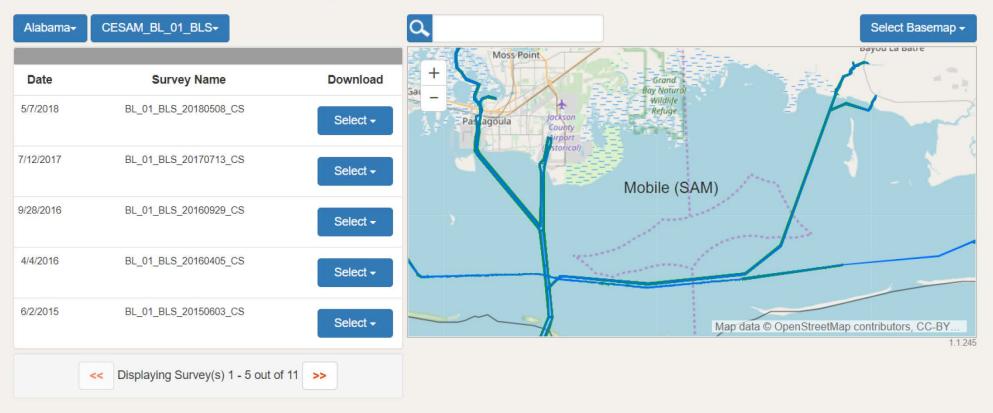
What is Coastal Systems Portfolio Initiative?

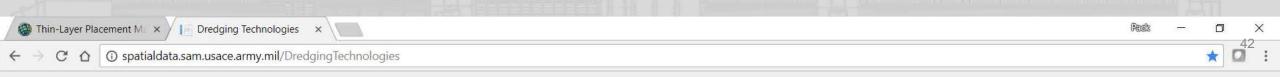
The Coastal Systems Portfolio Initiative (CSPI) databases provide an archive for data to support many of the CSPI initiatives.


As the federal agency authorized by Congress to study, plan, design, construct, and renourish coastal risk reduction projects, the USACE is tasked with providing technical input on current and future needs for coastal projects. Accurate, up-to-date, and accessible technical information serves as a valuable resource for decision makers responsible for making balanced, information-based decisions for managing coastal programs.

This web database presents the "big picture" about current and future needs for coastal projects within USACE. As the nation's engineer, the USACE collected and presented technical data and estimated costs, with consideration of project reliability and risk. The process used by the USACE to examine federal projects as a total system instead of as individual projects will continue to be refined over time. This technical review is an initial systems-based tool that decision makers at any level can use to make more informed judgments as they manage coastal risk reduction projects in the United States, both now and in the near future.

Use the list to the left to filter projects by location.


Use the Documents link above to access the latest digital products of the CSPI program.


Dooking for an online map? Follow the link above to view the locations of the CSPI projects.

Hydrographic Surveys

The hydrographic surveys provided by this application are to be used for informational purposes only and should not be used as a navigational aid. Channel conditions can change rapidly and the surveys may or may not be accurate. Click help for additional details.

Dredging Technologies

A tool to identify appropriate models based on selected criteria

Models

Problem Criteria

Dredge Type	Hydrodynamic
Hydraulic	CSTORM-MS
 Mechanical 	ADH
Location	ADCIRC
Dredging Location	CMS
Placement Location/Type	Sediment Transport
Problem Type	Confined Disposal Facility
Confined Disposal Facility Design	Contaminant Transport
Containment Transport	Health Risk Assessment
Sediment Transport	Sediment Assessment and Management
	Water Quality

THANK YOU!

More information visit http://arcgis.com and search for RSM content.

