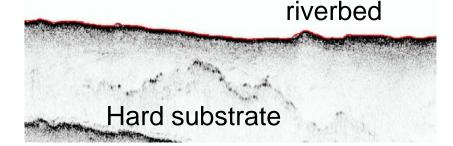
FY18 RSM IPR: Chirp Guidance

ERDC: Jesse McNinch & Heidi Wadman

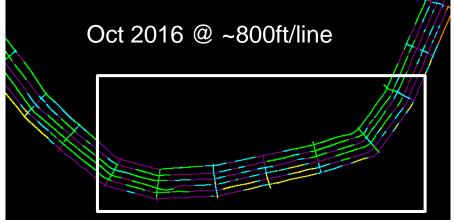

MVM: Andy Gaines; MVS: Eddie Brauer

BLUF: Identify sampling protocols to maximize the use of acoustic (chirp) sub-bottom imagery for USACE projects.

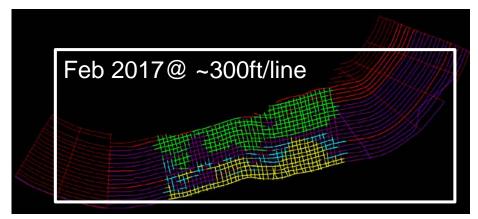
Challenge/Objectives

- Chirp data have the potential to greatly improve USACE's mission
- No formal guidance, and little standardized training opportunities, on instrument selection, data collection, or data processing
- Risk embracing a potentially valuable data tool only to discard it because the returns do not justify the cost.

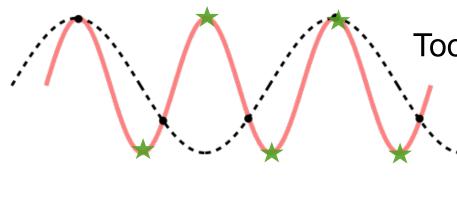
Approach


- Utilize previously collected data to determine cost/benefit of various collection strategies
- Identify basic standards for data collection
- Identify variables that need to be included in USACE standards
- Identify possible mechanisms to provide USACE training on purchasing, maintenance, data collection, and data processing.

FY18 RSM IPR: Chirp
Guidance
Spatial Sampling Protocol –
Goldilock's Approach


ERDC: Jesse McNinch & Heidi Wadman

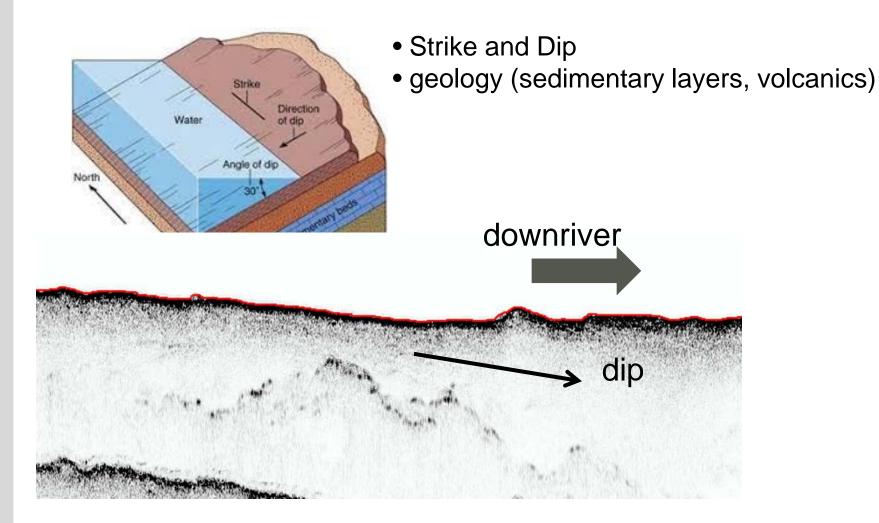
MVM: Andy Gaines MVS: Eddie Brauer


Leveraging/Collaborative Opportunities

- -- Over 216 miles of chirp data previously collected in support of the Hickman Hardpoint study with ERDC
- -- Multiple Districts currently attempting to incorporate this technology in a variety of ways

FY18 RSM IPR: Chirp Guidance Spatial Sampling Protocol – Nyquist Frequency for Spatial Features

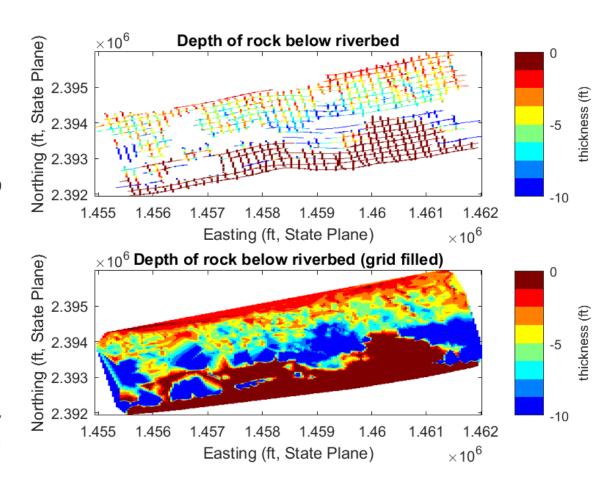
Too few samples -- aliasing


Nyquist ~ Goldilock's

-0.5 -1 the minimum rate at which a signal can be sampled without introducing errors, which is twice the highest frequency present in the signal.

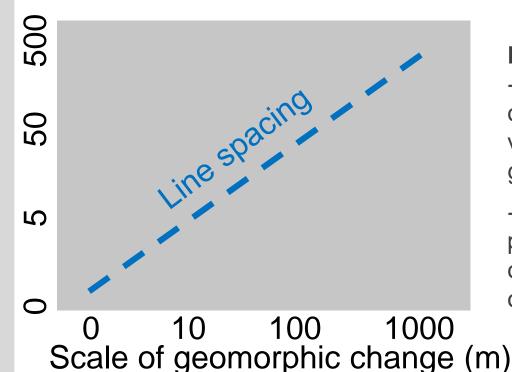
Too many samples -- \$\$\$\$

FY18 RSM IPR: Chirp Guidance Spatial Sampling Protocol – Geology not always periodic but is predictable



FY18 RSM IPR: Chirp Guidance Spatial Sampling Protocol – Geology not always periodic but is predictable

- All data have been processed (survey lines), including digitizing ~2000 features
- Data have been rectified to a common vertical datum (depth below riverbed) and exported
- Data are currently being gridded at a variety of resolutions/spacing to examine ability to accurately map subsurface elevation of hard substrates.



FY18 RSM IPR: Chirp Guidance Spatial Sampling Protocol – Survey-Line Spacing Guidance Curve

Challenges:

- -- Digitization of features took longer than expected
 - -- Challenging to subsample geophysical data
 - -- Extremely complicated geology

Plan Forward:

- -- Extrapolate results to a wide range of scenarios (e.g. hazard mapping vs. shoal volumes) and test simple geologic surfaces
- -- Identify best ways to both collect & process data (managed at Division or District level, via ERDC), plus optimal training options

FY18 RSM IPR: Chirp Guidance

ERDC: Jesse McNinch & Heidi Wadman

MVM: Andy Gaines; MVS: Eddie Brauer

Benefits to the USACE and Nation

- -- Multiple applications (e.g. habitat mapping, accurate borrow area calculations, identification of fine-grained regions, hazard mapping, levee structure/stability, pre-dredge volumes/sediment variability, sediment transport mechanisms)
 - -- collected simultaneously with bathymetry (reduce collection costs)
 - -- significantly fewer sediment cores to characterize a region
 - -- 4 Districts have purchased sub-bottom equipment; More?

Challenges

-- Current model of ERDC-driven utilization is not sustainable