Reservoir Sediment Management \& Analysis for Engineers

Non-modeling Techniques to Develop the Future Without Project (FWOP)

University of Kansas LEEP2 Building - Room G415 June 11-15, 2018

Outline

- Future Without Project (FWOP)
- Trendline
- Brune Curve
- To model or not to model?

Future Without Project

- Future Without Project (FWOP)
- Future Reservoir Condition (Typ. 50 Years)
- "Without Project" means continuation of the current sedimentation processes without changed management (not "without dam" or "without reservoir.")
- Specific Questions
- How much reservoir will be left in 50 years?
- How long until the reservoir volume shrinks to defined levels (that trigger lost benefits)?
- How much sediment will annually pass downstream in 50 years?
- When will the delta reach the service gates, dam, spillway, boatramp, water intake, etc.?

Trend Line Projection for Volume Loss

Note: Pre-impoundment survey from 1957 but dam closure in 1962.

- Original Capacity = 686 M CY
- Current (2010) Capacity $=390$ M CY
- 296 M CY / (2010-1962)
- = 6.2 M CY/year
- 2060 year capacity $=85$ M CY (15\% of original pool remains)

What are potential problems with a simple trend line?

Trend Line Issues: Blue = trend line will overpredict deposition, red = trend line will underpredict deposition, green= uncertain

- Sediment inflow rates equivalent
- Sediment trapping efficiency constant
- Hydrologically representative time period between surveys (i.e. extreme events in the right frequency)
- Ignores measurement error in bathymetry (particularly in the old survey!)
- Ignores further consolidation of old material
- Assumes no trend in hydrology or sediment (i.e. no climate change)

A more robust (still nonmodeling) approach

1. Estimate future annual sediment load

- Account for changes due to land use and climate change, and account for extreme events

2. Transform into a volume via unit weight
3. Estimate trapping efficiency changes over time with the Brune Curve

Trapping Efficiency

- The percentage of the incoming sediment that stays in the reservoir
- Does the trapping efficiency go up or down as the reservoir fills?

Trapping Efficiency

- As a reservoir fills with sediment:
- The residence time of the water decreases.
- The average velocity in the reservoir increases.
- The distance a particle has to travel before it reaches the outlet decreases.
- The trapping efficiency decreases.

Brune Curve

- Brune (1953) related trapping efficiency to the the reservoir volume divided by incoming flow volume.
- The Brune Curve can be used to
- Provide initial estimate of trapping efficiency and reservoir life
- Iteratively calculate trapped sediment year by year for a more refined estimate
- We will do both of these in an Excel-based workshop

Brune Curve

Measured Trapping Efficiency at Tuttle Creek Lake

- Measured Trapping Efficiency = 98\%

Prepared in cooperation with the Kansas Water Office
Suspended-Sediment Loads, Reservoir Sediment Trap Efficiency, and Upstream and Downstream Channel Stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

Brune Curve

Tuttle Creek Lake Average Annual Inflow = 2,341 M CY
Capacity (2010) = 390 M CY
C/I $=0.17$
$\mathrm{TE}=97.5$

Trapping Efficiency Changes Over Time

TE computed iteratively over 50 years

Straight Trend Line vs Brune Curve

- Brune Curve - Straight Line

For large reservoirs with high trapping efficiencies, results are very similar

Future Without Project

- Future Without Project (FWOP)
- Future Reservoir Condition (Typ. 50 Years)
- "Without Project" means continuation of the current sedimentation processes without changed management (not "without dam" or "without reservoir.")
- Specific Questions
- How much reservoir will be left in 50 years?
- How long until the reservoir volume shrinks to defined levels (that trigger damages)?
- How much sediment will annual pass downstream in 50 years?
- When will the delta reach the service gates, dam, spillway, boatramp, water intake, etc.?

Outline

\checkmark • Future Without Project (FWOP)
$\sqrt{ }$ - Trendline
\checkmark Brune Curve

- To model or not to model?

Empirical Approaches

- Provide recon-level analyses
- How big a problem do we actually have?
- Provide a future condition for other analyses (where sediment management is not the subject of the analysis)
- Initial screening of measures to reduce the number of alternatives to model
- Where sufficient data is lacking for good modeling anyway (and there is no time and/or budget to collect it)

Modeling

- To create a FWOP where sediment management is the "project"
- Provides a consistent analysis method to compare alternatives to the FWOP
- Situations with unique conditions, large implementation costs, high failure consequences

Questions?

